
~ Computer Graphics, Volume 21, Number 4, July 1987 
III I I I  

R e n d e r i n g  A n t i a l i a s e d  S h a d o w s  with Depth M a p s  

William T. Reeves 

David 1-1. Salesin~- 

Robert L. Cook 

Pixar 
San Rafael, CA 

ABSTRACT 

We present a solution to the aliasing problem for shadow algorithms 
that use depth maps. The solution is based on a new filtering tech- 
nique called percentage closer filtering. In addition to antialiasing, 
the improved algorithm provides soft shadow boundaries that resem- 
ble penumbrae. We describe the new algorithm in detail, demon- 
strate the effects of  its parameters, and analyze its performance. 

CR Categories  and  Subject  Descriptors:  1.3.3 [Computer Graph- 
ics]: Picture/Image Generation - Display algorithms; 1.3.7 [Com- 
pu te r  Graphics] :  Three-Dimensional Graphics and Realism - Color, 
shading, shadowing, and texture 

Genera l  Terms:  Algorithms, Performance Analysis 

Key Words:  shadows, depth maps, antialiasing, percentage closer 
filtering 

1. Introduction 

Shadows enhance the images synthesized by computers. 
Although many algorithms for rendering shadows have been pub- 
lished, most  have been either restricted to a limited crass of  modeling 
primitives or are computationally expensive. Max [Max86] has 
classified these shadow rendering techniques as ray tracing, prepro- 
cessing, shadow volumes, area subdivision, and z -buffer algorithms. 

Ray tracing algorithms [Whi80] [Kay79] [CPC84] [HAG86] produce 
excellent shadows and are easy to implement, but they are expensive. 
In order to make ray tracing more tractable, many techniques have 
been developed for quickly determining which object a secondary 
ray hits l ama84]  [HeH84] [RuW80] [KaK86]. However, this does 
not completely solve the problem, since once the object is deter- 
mined it must still be accessed from the database. As models 
become more complex, the need to access any part of the model at 
any stage becomes more expensive; model and texture paging can 
dominate the rendering time. 
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Non ray tracing algorithms produce shadows without tracing secon- 
dary rays. Because objects can be sorted into buckets or scan lines 
according to the part of  the screen they affect, the model can be 
accessed efficiently. But these algorithms also have serious limita- 
tions. Shadow ot maps [ReB85] [Coo84] provide only a 2½-D solu- 
tion, not a general 3-D solution. Preproeessing algorithms [BoKT0] 
are suitable mostly for static environments. Shadow volumes 
[Cro77] [Ber86] [Max86] [NON85] [BrB841 and area subdivision 
algorithms [AWG78] are restricted to polygonal data and are 
inefficient for complex environments. 

The z -buffer shadow algorithm developed by Williams [Wi178] does 
not have these problems. It can support all types of primitives; it is 
not excessively expensive, even for complex environments; and it is 
easy to implement. Its most serious drawback is a severe aliasing 
problem; it also requires additional memory for the z -buffer. 

The z-buffer algorithm's singular versatility, efficiency, and simpli- 
city make it tempting to look for ways to overcome its drawbacks, 
particularly the more serious aliasing problem. Storing floating point 
values in the depth buffer instead of 16-bit integers (as Williams did) 
reduces but  does not solve this problem. An approach proposed by 
Hourcade and Nicolas [HEN85] stores object tags instead of depth 
values, but a limitation is that surfaces may not cast shadows on 
themselves. 

In this paper, we introduce percentage closer filtering, a new sam- 
pling technique that can be used to eliminate the aliasing problem in 
Williams's z-buffer  shadow algorithm. In addition to providing 
antialiased shadows, our new technique can be used to render soft 
shadow edges that resemble penumbrae. 

2. Percentage Closer Filtering 

The z-buffer  algorithm presented in [Wi178] operates in two 
passes, as illustrated for a simple scene in Figure 1. In the first pass, 
a view of  the scene is computed from the light source's point of  
view, and the z values for objects nearest the light are stored in a z - 
buffer (also known as a depth map). In the second pass, the scene is 
rendered from the camera 's  position. At each pixel, a point on the 
surface is transformed to tight source space, and its transformed z is 
compared against the z of the object nearest the light, as recorded in 
the depth map. If  the transformed z is behind the stored z, the point 
is considered to be in shadow. 

This algorithm has two aliasing problems: one in creating the depth 
maps, and the other in sampling them. The first aliasing problem can 
be solved by creating the depth maps with stochastic sampling 
[Coo86]. We solve the second problem by introducing a new tech- 
nique called percentage closer filtering. 
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Light source 

]~"~-~-- Camera 

(a) View from high above the scene. (b) View from the light source. (c) View from the camera. 

Figure 1. Points of view for a simple scene. 

Ordinarily, texture maps are accessed by filtering the texture values 
over some region of the texture map. However, depth maps for sha- 
dow calculations cannot be accessed in this manner. The main prob- 
lem is that the filtered depth value would be compared to the depth 
of the surface being rendered to determine whether or not the surface 
is in shadow at that point. The result of this comparison would be 
binary, making soft antialiased edges impossible. Another problem 
is that filtered depth values along the edges of objects would bear no 
relation to the geometry of the scene. 

Our solution reverses the order of the filtering and comparison steps. 
The z values of the depth map across the entire region are first com- 
pared against the depth of  the surface being rendered. This sample 
transformation converts the depth map under the region into a binary 
image, which is then filtered to give the proportion of  the region in 
shadow. The resulting shadows have soft, antialiased edges. 

The difference between ordinary texture map filtering and percentage 
closer filtering is shown schematically in Figure 2. In this example, 
the distance from the light source to the surface to be shadowed is 
z = 49.8. The region in the depth map that it maps onto (shown on 
the left in the figures) is a square measuring 3 pixels by 3 pixels.* 
Ordinary filtering would filter the depth map values to get 22.9 and 
then compare that to 49.8 to end up with a value of  1 meaning that 
100% of  the surface was in shadow. Percentage closer filtering com- 
pares each depth map value to 49.8 and then filters the array of  
binary values to arrive at a value of .55 meaning that 55% of the sur- 
face is in shadow. 

A square region and box filtering are used to simplify this example. The real 
algorithm, as described in subsequent sections, uses more sophisticated 
techniques. 

50.2 50.0 50.0 

J 
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Surface at z = 49.8 
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22.9 ~ 1 

a) Ordinary texture map filtering. Does not work for depth maps. 
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b) Percentage closer filtering. 

Figure 2. Ordinary filtering versus percentage closer filtering. 

284 



~ Computer Graphics, Volume 21, Number 4, July 1987 

In ordinary texture map applications, the cost of examining every 
pixel in a region can be avoided by saving the texture in some 
prefiltered format such as resolution pyramids [Wi183] or summed- 
area tables [Cro84]. Because our sample transformation depends on 
the unfiltered depth values, we cannot apply any such prefiltering 
technique here. But we can limit the number of  texture pixel 
accesses in another way. By employing Monte Carlo techniques 
[Coo861, we can use a small, constant number of  samples to approxi- 
mate the result of  transforming every sample in the region. 

This can be done in one of  several ways (Figure 3): 

(a) choose samples randomly from a bounding box for the 
region; 

(b) choose samples under some distribution, such as a Gaus- 
sian, from the same bounding box; 

(c) partition the bounding box into subregions and sample 
each one with jitter; 

(d) sample only positions inside the geometric boundary of  
the region. 

Method (c), jitter sampling, approximates a Poisson disk distribution 
to produce shadows that are less noisy than those produced with 
either (a) or (b). All figures in this paper use (c), though (a) was used 
successfully in Luxo Jr. [Pix86]. Images made with (b) did not 
appear substantially different from those made with (a). We have 
not implemented (d), which is potentially more accurate, but also 
more complex and expensive. 

Increasing the size of the sample region diffuses a shadow's edge 
over a larger area, resulting in a soft shadow edge resembling a 
penumbra. Although the shadow edges produced am not true 
penumbrae (in that their sizes do not depend on the relative distances 
between objects and light source), we have nevertheless found them 
convincing enough for many applications, 

3. Implementation of the Algorithm 

We now describe in detail how percentage closer filtering can be 
used with a depth buffer to create shadows. As in Williams's origi- 
nal z-buffer algorithm, we use two passes: one to create the depth 
map for each light source; and one to render the scene, using the 
depth maps to determine portions of objects in shadow. 

3.1 First Pass: Creating the Depth Maps 

The depth map for each light source is created by computing the 
depth values for all objects in the image from the light source's point 
of  view. In the screen space of  the light, the x -  and y-coordinates 
correspond to pixel locations in the depth map, and the z -coordinate 
(in floating point) is the distance from the light in world space. We  
use the term light space to refer to these x ,  y ,  and z values. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

t 

a Bounding box sampled with uniform distribution. 

c Bounding box sampled with jitter. 

In practice, we use regular sampling instead of stochastic sampling 
when creating the depth maps. This is because with one sample per 
pixel and low depth map resolutions, the slight aliasing of depth 
values with regular sampling is sometimes less objectionable than 
noise with stochastic sampling. We  use a relatively course resolu- 
tion for our depth maps in order to minimize the memory require- 
ments. 

The first pass can be implemented very easily. In our rendering sys- 
tem, we only needed to make one change: instead of  computing and 
storing integer color values in a picture file, the closest z values 
(which are already being computed for l~dden surface calculations) 
must be stored in floating point in a texture file.* This change 
amounted to about 40 lines of code out of over 30,000 for the render- 
ing system as a whole. 

A depth map can be computed faster than a shaded image for several 
reasons. First, none of the shading, texturing, and lighting calcula- 
tions are needed. Second, objects (such as the ground plane) that 
never cast shadows on any other object can be ignored. Finally, 
depth maps require only one sample per pixel. 

3.2 Second Pass: Rendering the Scene 

In the second pass, the scene is rendered from the camera 's  point 
of view. Each shading calculation represents some region on a sur- 
face. Depending on the rendering system, these regions might 
represent anything from polygons coveting large areas of pixels 
(e.g., for a painter 's algorithm) to exact pixel regions (e.g., for scan- 
line methods) to tiny subpixel regions-(e.g., for micropolygons 
[CCC]). The shadow algorithm presented here is independent of the 
type of region used. 

Each region to he shaded is first mapped into light space, giving a 
region in the depth map. Percentage closer filtering is used to deter- 
mine the proportion of z values in the region of the depth map that 
are closer to the light than the surface. This gives the proportion of  
the surface in shadow over the region. This proportion is then used 
to attenuate the intensity of the light. If  several lights in a scene cast 
shadows, this process is repeated for every light. The attenuated 
intensities are then used in the shading calculations. 

One problem arises if  the transformed region lies outside the extent 
of the depth map. Generally, we use the convention that regions out- 
side the light source's field of  view are not considered to be in sha- 
dow. For directed lights the distinction is not important, since 
objects outside a l ight 's  field of  view are not illuminated by that light 
anyway. For lights that cast shadows in all directions, a more com- 
plex mapping scheme, such as spherical or cubical environment 
maps, should be used [Gre86]. 

* F o r  p ixe l s  c o n t a i n i n g  no  v i s i b l e  surface ,  a v e r y  l a rge  cons t an t  is s tored to deno te  
an infinite depth. 

b Bounding box sampled with gaussian distribution. 

• .. :".., x. ..... 
'.. . . . . . .  - . - "  "... :'-...._......x . . . .  

d Geometric boundary sampled with jitter. 

Figure 3. Different methods for choosing samples. 
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Our implementation of  the second pass is simplified by the use of  
light trees [Coo84]. Light trees are essentially small programs that 
describe the illumination calculations for individual light sources. 
They allow us to describe lights with different characteristics. For 
example, we earl control the softness of shadow edges or distinguish 
lights that east shadows from lights that do not. As each region is 
shaded, the light trees are called to determine the proportion of the 
region illuminated. Each light tree calls the percentage closer filter- 
ing routine, passing a pointer to the depth map and the region to be 
filtered, and uses the result (in conjunction, perhaps, with other 
parameters controlling the spatial distribution of the ligh0 in com- 
puting its contribution to the illumination of  the surface. 

In our implementation, the second pass required about 370 lines of 
code. Most of  this code served merely to integrate the heart of the 
percentage closer filtering algorithm, shown in Figure 4, with the rest 
of our renderer. 

The code in Figure d provides a number of parameters that we can 
adjust in computing our shadows. The N u m S a m p l e s  parameter 
Controls the number of  sample points used per region. The R e s -  
Factor parameter artificially enlarges the size of the sampling 
region, allowing lights that cast softer shadows. The B i a s  parame- 
ter is used to offset the surface slightly when comparisons to the z 
values in the depth buffer are made. This prevents a surface from 
incorrectly shadowing itself if  a z value for a point on the surface is 
compared to the depth map z from a nearby but different position on 
the same surface.* This incorrect self-shadowing can create Moir4 
patterns. The effects of  these and other parameters are discussed 
later. 

3.3 Storage Issues 

Depth maps tend to be large. We store along with each depth 
map a bounding box of  all pixels with finite depths, and pixeis out- 
side this box are not actually stored with the depth map. We have 
not found the working storage requirements of  our algorithm to be 
too great. For a scanline rendering algorithm, locality in the screen 
space of  the camera is correlated with locality in the screen space of  
the light source. Thus, a simple paging scheme works well for this 
application. 

Still more memory could potentially be saved by dividing the depth 
map into rectangular tiles, which could be cached to take better 
advantage of  the algorithm's two-dimensional locality. In addition, a 
tile scheme would allow us to store a maximum z value with each 
tile, thereby avoiding sampling the depth map altogether if  a region 
were further away from the light than any object in the tile. 

4. Examples 

4.1 Effect of Stochastic Percentage Closer Filtering 

Our first example, Figure 5, shows a simple scene. A light 
source off-screen to the left shines on a red sphere, which casts a sha- 
dow onto an uptight green plane. Figure 6 is the result when the dif- 
fuse and specular shading components are removed, revealing only 
the shadow component of  the shading. The image in Figure 6a was 
rendered with our algorithm but with its parameters set to simulate 
an ordinary z-buffer algorithm (i.e., the depth map is point sampled 
without jitter). The image in Figure 6b uses the same depth map as 
the other, but is rendered using our new technique of percentage 
closer filtering. This image has antialiased shadow edges. 

We actually specify a minimum and a maximum bias, and at every sample the 
actual bias is chosen stochastically from that range. This allows a surface to 
curve over to legitimately shadow itself without allasing. 

/* parameters setable in other, parts of renderer * / 
float ResFactor = 3, MinSize - 0, Bias0 - .3, Biasl - .4; 

int NumSamples - 16, MinSamples - i; 

#define MAPRES 1024 /* s i z e o f  dep thmap  */ 
float DepthMap[MAPRES] [MAPRES] ; /* actual depth map */ 

#define CLAMP(a, min, max) (a<min?min: (a>max?max:a)) 

f l o a t  R a n d  ( ) ; / *  returns random numbers in range [0.,1.) * / 
f l o a t  c e i  1 ( ) ; / *  returns smallesl integer no less than argument * / 
f l o a t  f l o o r  () ; /* returns largesI integer no greater than argument * /  

typedef struct { 
int r umin, r_umax; /* rain andmaxpixels in u dimension * / 
int r_vmin, r_vmax ; /* rain and max pixels in v dimen,~ion * / 

} TextureRect ; 

float SampleShadow(s, t, z, sres, tres, bbox) 
float s, t; /* dep thmap  indices, range [0.,1.) */ 
float z ; / ~ light space depth * / 
float sres, tres; /* size of sampling rectangle, range [0..I.) * / 
TextureRect *bbox; /* bounding box on depth map in pixels */ 

{ 
int i, j, inshadow, iu, iv, as, nt, lu, hu, iv, hg; 

float bias, smin, tmin, ds, dr, js, jr; 

/ * f fpoint  is behind light source, call it not  in shadow * / 
if (Z < 0.) 

return (0 . ) ; 

/ * convert to coordinates o f  depth map * / 
sres = MAPRES * sres * ResFactor; 

tres - MAPRES * tres * ResFactor; 

if(sres < MinSize) 
sres -- MinSize; 

if(tres < MinSize) 

tres - MinSize; 
s = s * MAPRES; t = t * MAPRES; 

/ *  cull i f  outside bounding box * /  
lu - floor(s - sres); hu = eeil(s + sres); 

iv - floor(t -tres) ; hv - ceil (t +tres) ; 

if (lu>bbox->r_umax II hu<bbox->r_umin 
II iv>bbox->r_vmax II hv<bbox->r_vmin) 

return (0.) ; 

/ * calculate number o f  samples * / 
if(sres*tres*4. < Nu~Samples) { 

ns z sres*2.+.5; 
ns = CLAMP(ns, MinSamples, NumSamples); 

nt = tres*2.+.5; 
nt = CLAMP(nt, MinSamples, MumSamples); 

} else { 
nt = sqrt (tres*NumSamples/sres) +. 5; 

ns = CLAMP (ns, MinSamples, NumSamples) ; 

ns = ( (float)NumSamples}/nt+.5; 
ntz CLAMP (nt, MinSamples, NumSamples) ; 

) 

/ * setup jitter variables * / 
ds = 2*sres/ns; dt ~ 2*tres/nt; 

js = ds*.5; jt = dr*.5; 

stain = s - sres + js; tmin = t - tres + jt; 

/ * test the samples * / 
inshadow = 0; 
for (i = 0, s ~ stain; i < ns; i = i+l, s = s+ds) { 

for (j = 0, t = tmin; j < nt; j = j+l, t = t+dt) { 

/ *  jitter s and t * / 
iu = s + Rand() * js; 
iv = t + Rand() * jr; 

/ * p ick  a random bias * / 
bias = Rand () * (Biasl-Bias0) +Bias0; 

/ * clip to bbox * / 
if (iu>=bbox->r umin && iu<=bbox->r_umax 

&& iv>=bbox->r vmin 

~ iv<=bbox->r vmax) { 

/ *  compare z value to z f rom depth map ~ u s  bias * / 
if(z > DepthMap[iu] [iv] + bias) 

inshadow - inshadow+i; 
} 

) 
} 
return ( ((float) inshadow) / ~ns*nt) ) ; 

Figure  4. Percentage Closer Filtering Algorithm. 
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Figure 7 shows the effect of increasing the N u m S a m p l e s  parame- 
ter. Because the shadow intensity is the result of filtering Num- 
S a m p l e s  binary values, the number of  bits in the shadow intensity 
is equal to the logarithm base 2 of  this parameter 's value. If Num- 
S a m p l e s  is too small, the shadow edges appear noisy; if it is larger, 
the filtering becomes better but more expensive. We normally use a 
NumSamples of 16. 

Figure  5. Sphere and plane example. 
(a) NumSamples I. (b) NumSamples 4. (c) NumSamples 16. 

Figure 7. Effect of the N u m S a m p l e s  parameter. 

Figure 8 shows the effect of increasing the R e s F a c t o r  parameter. 
In general, increasing R e s F a c t o r  produces softer shadow edges. 
Note that if R e s F a c t o r  is large, the soft shadow edges are wider, 
making the quantization of the shadow intensity more apparent. This 
may become objectionable unless N u m S a m p l e s  is increased. 
R e s F a c t o r  should never be less than one. If it is then any aliases 
or artifacts in the depth map are reproduced in the shadows. We nor- 
mally use a R e s F a c t o r  between 2 and 4. 

(a) Ordinary z -buffer algorithm. 

(b) Percentage closer filtering algorithm. 

Figure  6. Shadow component. 

4.2 Effect of Parameters 

We now explore the effects of the shadow algorithm's parame- 
ters defined earlier. In most of the following figures, we have 
zoomed in by pixel replication on  either the edge of the shadow east 
onto the plane or on the boundary of the self-shadowing region on 
the sphere. 

(a) ResFactor I. (b) ResFactor 3. (c) ResFactor 8. 

Figure  8. Effect of the R e s F a c t o r  parameter. 

Figure 9 shows the effect of increasing the Bias parameters. 
Increasing B i a s  eliminates the Moird patterns due to incorrect 
self-shadowing, but moves the shadow boundary away from its true 
position. In practice, we have not found it difficult to select B i a s  
values large enough to eliminate self-shadowing artifacts, yet small 

enough to avoid any noticeable problems from the offset boundary 
positions. Note that Bias values in our implementation depend on 
the world space metric of the object, since they are merely added to 
the z values of  the depth map. In worlds measuring 100 by 100 by 
100 units, typical bias values we use are (0.3, 0.4). 

Figure 10 shows the effect of increasing the resolution of the depth 
map, relative to the resolution of the final image. When the resolu- 
tion of the depth map is too small, the shadows are blurry and noisy 
because small detail is not represented in the depth map. When 
depth maps are too large, storage is wasted. We daormally use depth 
maps whose resolutions are the same size or twice as large (in each 
dimension) as the resolution of  the final image. Typically, we start 
with a depth map of the same size, make a few test images, and 
adjust if  necessary. 
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(a) (Bias (0.0,0.0). (b) (Bias (0.2,0.3). (c) (Bias (0.3,0.4). 

(d) (Bias (0.0, 0.0). (e) (Bias (0.2, 0.3). (f) ( B i a s  (0.3, 0.4). 

F igure  9. Effect of the B i a s  parameter. 

(a) Res 256x256. (b) Res 512x512. (c) Res 1024x1024. 

Figure  10. Effect of  depth map resolution. 

Two other parameters that we have not illustrated are M i n S a m -  
p l e s  and M i n S i z e .  These parameters supply absolute minimums 
for the number of samples taken along each of the region's x and y 
dimensions, and for the size in pixels of each dimension. As demon- 
strated in the sample code in Figure 4, they are used to control the 
effects of sampling oddly-shaped regions of the depth map. We typi- 
cally set M i n S a m p l e s  to 2 or 3 to give us fair coverage in both 
dimensions of the depth map, and M i n g i z e  to 2 to give us samples 
from at least four pixels. 

4.3 Colored Lights 

The shadow algorithm presented can be used equally well for 
colored lights. Figure 11 shows a scene illuminated by three colored 
lights (red, green, and blue) at different positions off-screen to the 
left. They cast light onto a white sphere before a white plane. 
Because the light sources are at different positions, their shadows 
overlap partially, creating a multi-colored pattern on the plane. 

F igure  1 l .  Colored lights example. 

4,4 Animation 

Our shadow algorithm was used in the computer animated film 
Luxo Jr. [Pix86]. Figure 12 is an example frame from the film. Fig- 
ure 13 shows the three depth maps created for the three light sources 
( " D a d " ,  " Jun io r " ,  and the ceiling light) that illuminate the scene. 
Here, levels of  grey are used to represent the range of  floating point 
z values of the depth map; objects closer to the light are darker in the 
image. Note that the ground plane does not appear in any of  the 
depth maps. Since it never shadows other objects, it is made invisi- 
ble, and its depths are never computed. 

4.5 Complex Scenes 

The shadow algorithm is currently being used in a new animated 
film called Red's Dream [Pix87]. Figure 14 is from a scene that 
takes place in a dimly lit bicycle store. The scene is illuminated by 
seven light sources, but only two of these lights actually cast sha- 
dows. While shadows are not the most prominent feature of this 
image, they add a subtlety that is important even in complex scenes. 

5. Performance 

The following measurements are for the shadow algorithm imple- 
mented as a part of  the reyes rendering system [CCC] running on a 
CCI Power 6/32 computer under the Berkeley 4.3 UNIXt operating 
system. A CCI machine executes at about four to six times a VAX 
11/780 on typical single precision floating point computations. 

The computation time for each example is shown in Table 1. All of  
the images were computed at a horizontal resolution of 1024 pixels 
with 16 stochastic samples per  pixel. The "Without  Shadows" 
column gives the time to compute the image without shadows. The 
"Number  of Lights"  column gives the number of  lights casting sha- 
dows, i.e., the number  of depth maps used. The "First  Pass"  
column gives the total time to compute the depth maps for all the 
light sources. The "Second Pass"  column gives the time to compute 
the final image with shadows. The "Total  With Shadows" column 
sums the times of the first and second passes. Finally, the " %  
Increase" column gives the percentage increase in time to compute 
the image with shadows over the time for the image without sha- 
dows. 

On average, an image with shadows costs 40% to 50% more than the 
one without. We consider this increase in computation time to be 
reasonable. The cost grows as the number of  light sources casting 
shadows grows, but it is significantly less than 
(l+NumberOfLights)xCostWithoutShadows which is what might be 
expected given that l+NumberOfLights images were computed to 
make it. 

t UNIX is a trademark of Bell Laboratories. 
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Figure 12. Frame from LuxoJr.  

Q 

i41t  

Figure 13. Shadow maps from Luxo Jr. 

Figure 14. Red's Dream 
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image 

Sphere and plane 
Colored lights 
Luxo Jr. 
Red' s Dream 

Without 
Shadows 

42.0 
64.4 
58.8 

261.3 

Computation Time (in minutes) 
Number of  Total 

Lights First pass Second pass With Shadows 

1 9.7 48.0 57.7 
3 14.2 80.8 95.0 
3 14.6 74.2 88.8 
2 55.3 332.1 387.4 

% Increase 

37.3 
47.6 
50.9 
48.4 

T A B L E  1. Shadow Algorithm Performance 

Image 

Sphere and plane 
Colored lights 
Luxo Jr. 
Bike Store 

Depth Map Storage (in megabytes) 

Resolutions Raw Depth Bounding Box Tile 
Maps Scheme Scheme 

1 at 10242 4.0 .4 .4 
3 at 10242 12.0 2.6 2.9 
1 at 20482, 2 at 10242 24.0 13.0 3.7 
2 at 10242 8.0 5.6 4.2 

T A B L E  2. Depth Map Storage 

A breakdown of  the extra time spent in computing our sample frame 
from Luxo Jr. gives an idea of where that extra time is spent. The 
first pass (creating the three depth maps) accounts for 50% of the 
extra time. Of  the remaining half, the percentage closer filtering 
accounts for 28%, and the transformation of regions'  coordinates 
into light space accounts for the remaining 22% of the extra time. 
This last transformation is performed by the light tree, which is 
implemented with an interpreted language. It could be sped up con- 
siderably i f  we wrote the transformation code in C. 

Depth map storage statistics for the examples are shown in Table 2. 
The "Reso lu t ion"  column lists the size of  the depth maps used. The 
"Raw Depth Maps"  column gives the total size of the depth maps if  
no storage compaction scheme is used. The "Bounding  Box 
Scheme"  column gives the size when only the parts of the depth 
map containing non-infinite depths are stored. The "Ti le  Scheme"  
column gives the size when 32×32-pixel tiles are used. 

While the algorithm uses a lot of storage when the raw depth maps 
are stored, our bounding box scheme can give significant improve- 
ments. In some very complex images, such as Red 's  Dream, the 
bounding box scheme may not save much storage because objects 
that can potentially east shadows are everywhere in the scene. In 
such images, a tile scheme may give better results. 

6. Limitations and Future Work 

Although the shadow algorithm described here provides an 
improvement to Williarns's original depth buffer algorithm, it still 
has many/imitat ions.  

The algorithm does not handle motion blur nor compute exact 
penumbrae. We are currently investigating extensions of  the algo- 
rithm that we believe will address these limitations. However, it is 
worth noting that for many situations the algorithm presented here is 
adequate. For instance, the shadows in Luxo Jr. did not have correct 
penumbrae, and while the lamps themselves were rendered with 
motion blur, the shadows were not. The algorithm presented here 
also does not address transparent or translucent objects that cast sha- 
dows. 

Although the use of  bounding boxes reduces the algorithm's storage 
requirements considerably, we would like to develop more sophisti- 
cated schemes for reducing this storage requirement further. The 

tile-based scheme outlined in this paper would be one approach. An 
adaptive scheme, where higher or lower resolution areas were used 
depending on the relative complexities of various regions of the 
scene, might also be appropriate. 

We would like to develop better tools for automating the process of  
creating the depth maps and generating the light trees. We would 
also like to build a system that used more intuitive parameters that 
corresponded more closely with aspects of  the appearance of  sha- 
dows in the scene. This might obviate much of  the trial-and-error we 
have relied upon in choosing parameter values for our scenes. 

Finally, we hope to be able to generalize and formalize the sample 
transformation step in percentage closer filtering. We believe that 
this technique may have important implications to the use of  texture 
maps for other purposes. For example, in bump mapping [B1i78], 
specular reflections could be computed before filtering, and the 
results could be filtered and sampled as ordinary textures. In this 
way, specular highlights from the mierofacets  of  a bumpy surface 
would be maintained even as the surface were translated back into 
the far distance. 

7. Conclusions 

We have presented a solution to the aliasing problem for the depth 
buffer shadow algorithm. This solution is based on a new technique 
for using texture maps called percentage closer filtering. Other 
improvements to the algorithm include using floating point values in 
the depth map and including the shadow information as part of the 
shading calculations instead of  as a postprocess. The new technique 
also provides a penumbra-like effect by providing control over the 
softness of shadow edges. 

Our method is more expensive than the original, both in terms of 
time and space. Percentage closer filtering takes more time than 
evaluating a single sample, and floating point numbers typically con- 
sume more space than integers. However, because percentage closer 
filtering requires only a constant number  of  samples per region, the 
extra cost is bounded by a constant factor, and in practice this factor 
is small. We feel that the extra time and space are justified by the 
improved image quality. This improved image quality has proven 
robust in an animated sequence. 
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