
~ Computer Graphics, Volume 21, Number 4, July 1987
III I I I

R e n d e r i n g A n t i a l i a s e d S h a d o w s with Depth M a p s

William T. Reeves

David 1-1. Salesin~-

Robert L. Cook

Pixar
San Rafael, CA

ABSTRACT

We present a solution to the aliasing problem for shadow algorithms
that use depth maps. The solution is based on a new filtering tech-
nique called percentage closer filtering. In addition to antialiasing,
the improved algorithm provides soft shadow boundaries that resem-
ble penumbrae. We describe the new algorithm in detail, demon-
strate the effects of its parameters, and analyze its performance.

CR Categories and Subject Descriptors: 1.3.3 [Computer Graph-
ics]: Picture/Image Generation - Display algorithms; 1.3.7 [Com-
pu te r Graphics] : Three-Dimensional Graphics and Realism - Color,
shading, shadowing, and texture

Genera l Terms: Algorithms, Performance Analysis

Key Words: shadows, depth maps, antialiasing, percentage closer
filtering

1. Introduction

Shadows enhance the images synthesized by computers.
Although many algorithms for rendering shadows have been pub-
lished, most have been either restricted to a limited crass of modeling
primitives or are computationally expensive. Max [Max86] has
classified these shadow rendering techniques as ray tracing, prepro-
cessing, shadow volumes, area subdivision, and z -buffer algorithms.

Ray tracing algorithms [Whi80] [Kay79] [CPC84] [HAG86] produce
excellent shadows and are easy to implement, but they are expensive.
In order to make ray tracing more tractable, many techniques have
been developed for quickly determining which object a secondary
ray hits l ama84] [HeH84] [RuW80] [KaK86]. However, this does
not completely solve the problem, since once the object is deter-
mined it must still be accessed from the database. As models
become more complex, the need to access any part of the model at
any stage becomes more expensive; model and texture paging can
dominate the rendering time.

I" Current address: Computer Science DepL, Stanford University, Stanford, CA
94305

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notioe and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Non ray tracing algorithms produce shadows without tracing secon-
dary rays. Because objects can be sorted into buckets or scan lines
according to the part of the screen they affect, the model can be
accessed efficiently. But these algorithms also have serious limita-
tions. Shadow ot maps [ReB85] [Coo84] provide only a 2½-D solu-
tion, not a general 3-D solution. Preproeessing algorithms [BoKT0]
are suitable mostly for static environments. Shadow volumes
[Cro77] [Ber86] [Max86] [NON85] [BrB841 and area subdivision
algorithms [AWG78] are restricted to polygonal data and are
inefficient for complex environments.

The z -buffer shadow algorithm developed by Williams [Wi178] does
not have these problems. It can support all types of primitives; it is
not excessively expensive, even for complex environments; and it is
easy to implement. Its most serious drawback is a severe aliasing
problem; it also requires additional memory for the z -buffer.

The z-buffer algorithm's singular versatility, efficiency, and simpli-
city make it tempting to look for ways to overcome its drawbacks,
particularly the more serious aliasing problem. Storing floating point
values in the depth buffer instead of 16-bit integers (as Williams did)
reduces but does not solve this problem. An approach proposed by
Hourcade and Nicolas [HEN85] stores object tags instead of depth
values, but a limitation is that surfaces may not cast shadows on
themselves.

In this paper, we introduce percentage closer filtering, a new sam-
pling technique that can be used to eliminate the aliasing problem in
Williams's z-buffer shadow algorithm. In addition to providing
antialiased shadows, our new technique can be used to render soft
shadow edges that resemble penumbrae.

2. Percentage Closer Filtering

The z-buffer algorithm presented in [Wi178] operates in two
passes, as illustrated for a simple scene in Figure 1. In the first pass,
a view of the scene is computed from the light source's point of
view, and the z values for objects nearest the light are stored in a z -
buffer (also known as a depth map). In the second pass, the scene is
rendered from the camera 's position. At each pixel, a point on the
surface is transformed to tight source space, and its transformed z is
compared against the z of the object nearest the light, as recorded in
the depth map. If the transformed z is behind the stored z, the point
is considered to be in shadow.

This algorithm has two aliasing problems: one in creating the depth
maps, and the other in sampling them. The first aliasing problem can
be solved by creating the depth maps with stochastic sampling
[Coo86]. We solve the second problem by introducing a new tech-
nique called percentage closer filtering.

© 1987 ACM-0-89791-227-6/87/007/0283 $00.75

283

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

Light source

]~"~-~-- Camera

(a) View from high above the scene. (b) View from the light source. (c) View from the camera.

Figure 1. Points of view for a simple scene.

Ordinarily, texture maps are accessed by filtering the texture values
over some region of the texture map. However, depth maps for sha-
dow calculations cannot be accessed in this manner. The main prob-
lem is that the filtered depth value would be compared to the depth
of the surface being rendered to determine whether or not the surface
is in shadow at that point. The result of this comparison would be
binary, making soft antialiased edges impossible. Another problem
is that filtered depth values along the edges of objects would bear no
relation to the geometry of the scene.

Our solution reverses the order of the filtering and comparison steps.
The z values of the depth map across the entire region are first com-
pared against the depth of the surface being rendered. This sample
transformation converts the depth map under the region into a binary
image, which is then filtered to give the proportion of the region in
shadow. The resulting shadows have soft, antialiased edges.

The difference between ordinary texture map filtering and percentage
closer filtering is shown schematically in Figure 2. In this example,
the distance from the light source to the surface to be shadowed is
z = 49.8. The region in the depth map that it maps onto (shown on
the left in the figures) is a square measuring 3 pixels by 3 pixels.*
Ordinary filtering would filter the depth map values to get 22.9 and
then compare that to 49.8 to end up with a value of 1 meaning that
100% of the surface was in shadow. Percentage closer filtering com-
pares each depth map value to 49.8 and then filters the array of
binary values to arrive at a value of .55 meaning that 55% of the sur-
face is in shadow.

A square region and box filtering are used to simplify this example. The real
algorithm, as described in subsequent sections, uses more sophisticated
techniques.

50.2 50.0 50.0

J
, x -4-----,---"-

50.1 1.2 1.1

1.3 1.4 t .2

Surface at z = 49.8

)
22.9 ~ 1

a) Ordinary texture map filtering. Does not work for depth maps.

50.2

50.1

1.3

50.0 50.0

1.2 1.1

1.4 1.2

Surface at z = 49.8

/
J 0 0 0

1 1 1

~ .55

Sample Transform Step

b) Percentage closer filtering.

Figure 2. Ordinary filtering versus percentage closer filtering.

284

~ Computer Graphics, Volume 21, Number 4, July 1987

In ordinary texture map applications, the cost of examining every
pixel in a region can be avoided by saving the texture in some
prefiltered format such as resolution pyramids [Wi183] or summed-
area tables [Cro84]. Because our sample transformation depends on
the unfiltered depth values, we cannot apply any such prefiltering
technique here. But we can limit the number of texture pixel
accesses in another way. By employing Monte Carlo techniques
[Coo861, we can use a small, constant number of samples to approxi-
mate the result of transforming every sample in the region.

This can be done in one of several ways (Figure 3):

(a) choose samples randomly from a bounding box for the
region;

(b) choose samples under some distribution, such as a Gaus-
sian, from the same bounding box;

(c) partition the bounding box into subregions and sample
each one with jitter;

(d) sample only positions inside the geometric boundary of
the region.

Method (c), jitter sampling, approximates a Poisson disk distribution
to produce shadows that are less noisy than those produced with
either (a) or (b). All figures in this paper use (c), though (a) was used
successfully in Luxo Jr. [Pix86]. Images made with (b) did not
appear substantially different from those made with (a). We have
not implemented (d), which is potentially more accurate, but also
more complex and expensive.

Increasing the size of the sample region diffuses a shadow's edge
over a larger area, resulting in a soft shadow edge resembling a
penumbra. Although the shadow edges produced am not true
penumbrae (in that their sizes do not depend on the relative distances
between objects and light source), we have nevertheless found them
convincing enough for many applications,

3. Implementation of the Algorithm

We now describe in detail how percentage closer filtering can be
used with a depth buffer to create shadows. As in Williams's origi-
nal z-buffer algorithm, we use two passes: one to create the depth
map for each light source; and one to render the scene, using the
depth maps to determine portions of objects in shadow.

3.1 First Pass: Creating the Depth Maps

The depth map for each light source is created by computing the
depth values for all objects in the image from the light source's point
of view. In the screen space of the light, the x - and y-coordinates
correspond to pixel locations in the depth map, and the z -coordinate
(in floating point) is the distance from the light in world space. We
use the term light space to refer to these x , y , and z values.

.

t

a Bounding box sampled with uniform distribution.

c Bounding box sampled with jitter.

In practice, we use regular sampling instead of stochastic sampling
when creating the depth maps. This is because with one sample per
pixel and low depth map resolutions, the slight aliasing of depth
values with regular sampling is sometimes less objectionable than
noise with stochastic sampling. We use a relatively course resolu-
tion for our depth maps in order to minimize the memory require-
ments.

The first pass can be implemented very easily. In our rendering sys-
tem, we only needed to make one change: instead of computing and
storing integer color values in a picture file, the closest z values
(which are already being computed for l~dden surface calculations)
must be stored in floating point in a texture file.* This change
amounted to about 40 lines of code out of over 30,000 for the render-
ing system as a whole.

A depth map can be computed faster than a shaded image for several
reasons. First, none of the shading, texturing, and lighting calcula-
tions are needed. Second, objects (such as the ground plane) that
never cast shadows on any other object can be ignored. Finally,
depth maps require only one sample per pixel.

3.2 Second Pass: Rendering the Scene

In the second pass, the scene is rendered from the camera 's point
of view. Each shading calculation represents some region on a sur-
face. Depending on the rendering system, these regions might
represent anything from polygons coveting large areas of pixels
(e.g., for a painter 's algorithm) to exact pixel regions (e.g., for scan-
line methods) to tiny subpixel regions-(e.g., for micropolygons
[CCC]). The shadow algorithm presented here is independent of the
type of region used.

Each region to he shaded is first mapped into light space, giving a
region in the depth map. Percentage closer filtering is used to deter-
mine the proportion of z values in the region of the depth map that
are closer to the light than the surface. This gives the proportion of
the surface in shadow over the region. This proportion is then used
to attenuate the intensity of the light. If several lights in a scene cast
shadows, this process is repeated for every light. The attenuated
intensities are then used in the shading calculations.

One problem arises if the transformed region lies outside the extent
of the depth map. Generally, we use the convention that regions out-
side the light source's field of view are not considered to be in sha-
dow. For directed lights the distinction is not important, since
objects outside a l ight 's field of view are not illuminated by that light
anyway. For lights that cast shadows in all directions, a more com-
plex mapping scheme, such as spherical or cubical environment
maps, should be used [Gre86].

* F o r p ixe l s c o n t a i n i n g no v i s i b l e surface , a v e r y l a rge cons t an t is s tored to deno te
an infinite depth.

b Bounding box sampled with gaussian distribution.

• .. :".., x.
'.. - . - " "... :'-...._......x

d Geometric boundary sampled with jitter.

Figure 3. Different methods for choosing samples.

285

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

Our implementation of the second pass is simplified by the use of
light trees [Coo84]. Light trees are essentially small programs that
describe the illumination calculations for individual light sources.
They allow us to describe lights with different characteristics. For
example, we earl control the softness of shadow edges or distinguish
lights that east shadows from lights that do not. As each region is
shaded, the light trees are called to determine the proportion of the
region illuminated. Each light tree calls the percentage closer filter-
ing routine, passing a pointer to the depth map and the region to be
filtered, and uses the result (in conjunction, perhaps, with other
parameters controlling the spatial distribution of the ligh0 in com-
puting its contribution to the illumination of the surface.

In our implementation, the second pass required about 370 lines of
code. Most of this code served merely to integrate the heart of the
percentage closer filtering algorithm, shown in Figure 4, with the rest
of our renderer.

The code in Figure d provides a number of parameters that we can
adjust in computing our shadows. The N u m S a m p l e s parameter
Controls the number of sample points used per region. The R e s -
Factor parameter artificially enlarges the size of the sampling
region, allowing lights that cast softer shadows. The B i a s parame-
ter is used to offset the surface slightly when comparisons to the z
values in the depth buffer are made. This prevents a surface from
incorrectly shadowing itself if a z value for a point on the surface is
compared to the depth map z from a nearby but different position on
the same surface.* This incorrect self-shadowing can create Moir4
patterns. The effects of these and other parameters are discussed
later.

3.3 Storage Issues

Depth maps tend to be large. We store along with each depth
map a bounding box of all pixels with finite depths, and pixeis out-
side this box are not actually stored with the depth map. We have
not found the working storage requirements of our algorithm to be
too great. For a scanline rendering algorithm, locality in the screen
space of the camera is correlated with locality in the screen space of
the light source. Thus, a simple paging scheme works well for this
application.

Still more memory could potentially be saved by dividing the depth
map into rectangular tiles, which could be cached to take better
advantage of the algorithm's two-dimensional locality. In addition, a
tile scheme would allow us to store a maximum z value with each
tile, thereby avoiding sampling the depth map altogether if a region
were further away from the light than any object in the tile.

4. Examples

4.1 Effect of Stochastic Percentage Closer Filtering

Our first example, Figure 5, shows a simple scene. A light
source off-screen to the left shines on a red sphere, which casts a sha-
dow onto an uptight green plane. Figure 6 is the result when the dif-
fuse and specular shading components are removed, revealing only
the shadow component of the shading. The image in Figure 6a was
rendered with our algorithm but with its parameters set to simulate
an ordinary z-buffer algorithm (i.e., the depth map is point sampled
without jitter). The image in Figure 6b uses the same depth map as
the other, but is rendered using our new technique of percentage
closer filtering. This image has antialiased shadow edges.

We actually specify a minimum and a maximum bias, and at every sample the
actual bias is chosen stochastically from that range. This allows a surface to
curve over to legitimately shadow itself without allasing.

/* parameters setable in other, parts of renderer * /
float ResFactor = 3, MinSize - 0, Bias0 - .3, Biasl - .4;

int NumSamples - 16, MinSamples - i;

#define MAPRES 1024 /* s i z e o f dep thmap */
float DepthMap[MAPRES] [MAPRES] ; /* actual depth map */

#define CLAMP(a, min, max) (a<min?min: (a>max?max:a))

f l o a t R a n d () ; / * returns random numbers in range [0.,1.) * /
f l o a t c e i 1 () ; / * returns smallesl integer no less than argument * /
f l o a t f l o o r () ; /* returns largesI integer no greater than argument * /

typedef struct {
int r umin, r_umax; /* rain andmaxpixels in u dimension * /
int r_vmin, r_vmax ; /* rain and max pixels in v dimen,~ion * /

} TextureRect ;

float SampleShadow(s, t, z, sres, tres, bbox)
float s, t; /* dep thmap indices, range [0.,1.) */
float z ; / ~ light space depth * /
float sres, tres; /* size of sampling rectangle, range [0..I.) * /
TextureRect *bbox; /* bounding box on depth map in pixels */

{
int i, j, inshadow, iu, iv, as, nt, lu, hu, iv, hg;

float bias, smin, tmin, ds, dr, js, jr;

/ * f fpoint is behind light source, call it not in shadow * /
if (Z < 0.)

return (0 .) ;

/ * convert to coordinates o f depth map * /
sres = MAPRES * sres * ResFactor;

tres - MAPRES * tres * ResFactor;

if(sres < MinSize)
sres -- MinSize;

if(tres < MinSize)

tres - MinSize;
s = s * MAPRES; t = t * MAPRES;

/ * cull i f outside bounding box * /
lu - floor(s - sres); hu = eeil(s + sres);

iv - floor(t -tres) ; hv - ceil (t +tres) ;

if (lu>bbox->r_umax II hu<bbox->r_umin
II iv>bbox->r_vmax II hv<bbox->r_vmin)

return (0.) ;

/ * calculate number o f samples * /
if(sres*tres*4. < Nu~Samples) {

ns z sres*2.+.5;
ns = CLAMP(ns, MinSamples, NumSamples);

nt = tres*2.+.5;
nt = CLAMP(nt, MinSamples, MumSamples);

} else {
nt = sqrt (tres*NumSamples/sres) +. 5;

ns = CLAMP (ns, MinSamples, NumSamples) ;

ns = ((float)NumSamples}/nt+.5;
ntz CLAMP (nt, MinSamples, NumSamples) ;

)

/ * setup jitter variables * /
ds = 2*sres/ns; dt ~ 2*tres/nt;

js = ds*.5; jt = dr*.5;

stain = s - sres + js; tmin = t - tres + jt;

/ * test the samples * /
inshadow = 0;
for (i = 0, s ~ stain; i < ns; i = i+l, s = s+ds) {

for (j = 0, t = tmin; j < nt; j = j+l, t = t+dt) {

/ * jitter s and t * /
iu = s + Rand() * js;
iv = t + Rand() * jr;

/ * p ick a random bias * /
bias = Rand () * (Biasl-Bias0) +Bias0;

/ * clip to bbox * /
if (iu>=bbox->r umin && iu<=bbox->r_umax

&& iv>=bbox->r vmin

~ iv<=bbox->r vmax) {

/ * compare z value to z f rom depth map ~ u s bias * /
if(z > DepthMap[iu] [iv] + bias)

inshadow - inshadow+i;
}

)
}
return (((float) inshadow) / ~ns*nt)) ;

Figure 4. Percentage Closer Filtering Algorithm.

286

(~) ~ Computer Graphics, Volume 21, Number 4, July 1987

O +

Figure 7 shows the effect of increasing the N u m S a m p l e s parame-
ter. Because the shadow intensity is the result of filtering Num-
S a m p l e s binary values, the number of bits in the shadow intensity
is equal to the logarithm base 2 of this parameter 's value. If Num-
S a m p l e s is too small, the shadow edges appear noisy; if it is larger,
the filtering becomes better but more expensive. We normally use a
NumSamples of 16.

Figure 5. Sphere and plane example.
(a) NumSamples I. (b) NumSamples 4. (c) NumSamples 16.

Figure 7. Effect of the N u m S a m p l e s parameter.

Figure 8 shows the effect of increasing the R e s F a c t o r parameter.
In general, increasing R e s F a c t o r produces softer shadow edges.
Note that if R e s F a c t o r is large, the soft shadow edges are wider,
making the quantization of the shadow intensity more apparent. This
may become objectionable unless N u m S a m p l e s is increased.
R e s F a c t o r should never be less than one. If it is then any aliases
or artifacts in the depth map are reproduced in the shadows. We nor-
mally use a R e s F a c t o r between 2 and 4.

(a) Ordinary z -buffer algorithm.

(b) Percentage closer filtering algorithm.

Figure 6. Shadow component.

4.2 Effect of Parameters

We now explore the effects of the shadow algorithm's parame-
ters defined earlier. In most of the following figures, we have
zoomed in by pixel replication on either the edge of the shadow east
onto the plane or on the boundary of the self-shadowing region on
the sphere.

(a) ResFactor I. (b) ResFactor 3. (c) ResFactor 8.

Figure 8. Effect of the R e s F a c t o r parameter.

Figure 9 shows the effect of increasing the Bias parameters.
Increasing B i a s eliminates the Moird patterns due to incorrect
self-shadowing, but moves the shadow boundary away from its true
position. In practice, we have not found it difficult to select B i a s
values large enough to eliminate self-shadowing artifacts, yet small

enough to avoid any noticeable problems from the offset boundary
positions. Note that Bias values in our implementation depend on
the world space metric of the object, since they are merely added to
the z values of the depth map. In worlds measuring 100 by 100 by
100 units, typical bias values we use are (0.3, 0.4).

Figure 10 shows the effect of increasing the resolution of the depth
map, relative to the resolution of the final image. When the resolu-
tion of the depth map is too small, the shadows are blurry and noisy
because small detail is not represented in the depth map. When
depth maps are too large, storage is wasted. We daormally use depth
maps whose resolutions are the same size or twice as large (in each
dimension) as the resolution of the final image. Typically, we start
with a depth map of the same size, make a few test images, and
adjust if necessary.

287

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

(a) (Bias (0.0,0.0). (b) (Bias (0.2,0.3). (c) (Bias (0.3,0.4).

(d) (Bias (0.0, 0.0). (e) (Bias (0.2, 0.3). (f) (B i a s (0.3, 0.4).

F igure 9. Effect of the B i a s parameter.

(a) Res 256x256. (b) Res 512x512. (c) Res 1024x1024.

Figure 10. Effect of depth map resolution.

Two other parameters that we have not illustrated are M i n S a m -
p l e s and M i n S i z e . These parameters supply absolute minimums
for the number of samples taken along each of the region's x and y
dimensions, and for the size in pixels of each dimension. As demon-
strated in the sample code in Figure 4, they are used to control the
effects of sampling oddly-shaped regions of the depth map. We typi-
cally set M i n S a m p l e s to 2 or 3 to give us fair coverage in both
dimensions of the depth map, and M i n g i z e to 2 to give us samples
from at least four pixels.

4.3 Colored Lights

The shadow algorithm presented can be used equally well for
colored lights. Figure 11 shows a scene illuminated by three colored
lights (red, green, and blue) at different positions off-screen to the
left. They cast light onto a white sphere before a white plane.
Because the light sources are at different positions, their shadows
overlap partially, creating a multi-colored pattern on the plane.

F igure 1 l . Colored lights example.

4,4 Animation

Our shadow algorithm was used in the computer animated film
Luxo Jr. [Pix86]. Figure 12 is an example frame from the film. Fig-
ure 13 shows the three depth maps created for the three light sources
(" D a d " , " Jun io r " , and the ceiling light) that illuminate the scene.
Here, levels of grey are used to represent the range of floating point
z values of the depth map; objects closer to the light are darker in the
image. Note that the ground plane does not appear in any of the
depth maps. Since it never shadows other objects, it is made invisi-
ble, and its depths are never computed.

4.5 Complex Scenes

The shadow algorithm is currently being used in a new animated
film called Red's Dream [Pix87]. Figure 14 is from a scene that
takes place in a dimly lit bicycle store. The scene is illuminated by
seven light sources, but only two of these lights actually cast sha-
dows. While shadows are not the most prominent feature of this
image, they add a subtlety that is important even in complex scenes.

5. Performance

The following measurements are for the shadow algorithm imple-
mented as a part of the reyes rendering system [CCC] running on a
CCI Power 6/32 computer under the Berkeley 4.3 UNIXt operating
system. A CCI machine executes at about four to six times a VAX
11/780 on typical single precision floating point computations.

The computation time for each example is shown in Table 1. All of
the images were computed at a horizontal resolution of 1024 pixels
with 16 stochastic samples per pixel. The "Without Shadows"
column gives the time to compute the image without shadows. The
"Number of Lights" column gives the number of lights casting sha-
dows, i.e., the number of depth maps used. The "First Pass"
column gives the total time to compute the depth maps for all the
light sources. The "Second Pass" column gives the time to compute
the final image with shadows. The "Total With Shadows" column
sums the times of the first and second passes. Finally, the " %
Increase" column gives the percentage increase in time to compute
the image with shadows over the time for the image without sha-
dows.

On average, an image with shadows costs 40% to 50% more than the
one without. We consider this increase in computation time to be
reasonable. The cost grows as the number of light sources casting
shadows grows, but it is significantly less than
(l+NumberOfLights)xCostWithoutShadows which is what might be
expected given that l+NumberOfLights images were computed to
make it.

t UNIX is a trademark of Bell Laboratories.

288

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

Figure 12. Frame from LuxoJr.

Q

i41t

Figure 13. Shadow maps from Luxo Jr.

Figure 14. Red's Dream

289

• SIGGRAPH '87, Anaheim, July 27-31 1987
I ~ ~]

image

Sphere and plane
Colored lights
Luxo Jr.
Red' s Dream

Without
Shadows

42.0
64.4
58.8

261.3

Computation Time (in minutes)
Number of Total

Lights First pass Second pass With Shadows

1 9.7 48.0 57.7
3 14.2 80.8 95.0
3 14.6 74.2 88.8
2 55.3 332.1 387.4

% Increase

37.3
47.6
50.9
48.4

T A B L E 1. Shadow Algorithm Performance

Image

Sphere and plane
Colored lights
Luxo Jr.
Bike Store

Depth Map Storage (in megabytes)

Resolutions Raw Depth Bounding Box Tile
Maps Scheme Scheme

1 at 10242 4.0 .4 .4
3 at 10242 12.0 2.6 2.9
1 at 20482, 2 at 10242 24.0 13.0 3.7
2 at 10242 8.0 5.6 4.2

T A B L E 2. Depth Map Storage

A breakdown of the extra time spent in computing our sample frame
from Luxo Jr. gives an idea of where that extra time is spent. The
first pass (creating the three depth maps) accounts for 50% of the
extra time. Of the remaining half, the percentage closer filtering
accounts for 28%, and the transformation of regions' coordinates
into light space accounts for the remaining 22% of the extra time.
This last transformation is performed by the light tree, which is
implemented with an interpreted language. It could be sped up con-
siderably i f we wrote the transformation code in C.

Depth map storage statistics for the examples are shown in Table 2.
The "Reso lu t ion" column lists the size of the depth maps used. The
"Raw Depth Maps" column gives the total size of the depth maps if
no storage compaction scheme is used. The "Bounding Box
Scheme" column gives the size when only the parts of the depth
map containing non-infinite depths are stored. The "Ti le Scheme"
column gives the size when 32×32-pixel tiles are used.

While the algorithm uses a lot of storage when the raw depth maps
are stored, our bounding box scheme can give significant improve-
ments. In some very complex images, such as Red 's Dream, the
bounding box scheme may not save much storage because objects
that can potentially east shadows are everywhere in the scene. In
such images, a tile scheme may give better results.

6. Limitations and Future Work

Although the shadow algorithm described here provides an
improvement to Williarns's original depth buffer algorithm, it still
has many/imitat ions.

The algorithm does not handle motion blur nor compute exact
penumbrae. We are currently investigating extensions of the algo-
rithm that we believe will address these limitations. However, it is
worth noting that for many situations the algorithm presented here is
adequate. For instance, the shadows in Luxo Jr. did not have correct
penumbrae, and while the lamps themselves were rendered with
motion blur, the shadows were not. The algorithm presented here
also does not address transparent or translucent objects that cast sha-
dows.

Although the use of bounding boxes reduces the algorithm's storage
requirements considerably, we would like to develop more sophisti-
cated schemes for reducing this storage requirement further. The

tile-based scheme outlined in this paper would be one approach. An
adaptive scheme, where higher or lower resolution areas were used
depending on the relative complexities of various regions of the
scene, might also be appropriate.

We would like to develop better tools for automating the process of
creating the depth maps and generating the light trees. We would
also like to build a system that used more intuitive parameters that
corresponded more closely with aspects of the appearance of sha-
dows in the scene. This might obviate much of the trial-and-error we
have relied upon in choosing parameter values for our scenes.

Finally, we hope to be able to generalize and formalize the sample
transformation step in percentage closer filtering. We believe that
this technique may have important implications to the use of texture
maps for other purposes. For example, in bump mapping [B1i78],
specular reflections could be computed before filtering, and the
results could be filtered and sampled as ordinary textures. In this
way, specular highlights from the mierofacets of a bumpy surface
would be maintained even as the surface were translated back into
the far distance.

7. Conclusions

We have presented a solution to the aliasing problem for the depth
buffer shadow algorithm. This solution is based on a new technique
for using texture maps called percentage closer filtering. Other
improvements to the algorithm include using floating point values in
the depth map and including the shadow information as part of the
shading calculations instead of as a postprocess. The new technique
also provides a penumbra-like effect by providing control over the
softness of shadow edges.

Our method is more expensive than the original, both in terms of
time and space. Percentage closer filtering takes more time than
evaluating a single sample, and floating point numbers typically con-
sume more space than integers. However, because percentage closer
filtering requires only a constant number of samples per region, the
extra cost is bounded by a constant factor, and in practice this factor
is small. We feel that the extra time and space are justified by the
improved image quality. This improved image quality has proven
robust in an animated sequence.

8. Acknowledgements

Eben Ostby, Loren Carpenter and Paul Heckbert provided many
significant insights while the algorithm was being developed. Eben
also found several bugs and optimized parts of the code. Eben and
John Lasseter helped test the algorithm by designing animated
sequences that depended on the shadows to work. Ricki Blau pro-
vided photographic assistance.

290

~ Computer Graphics, Volume 21, Number 4, July 1987

9. Bibliography

lama841

IAWG781

[Ber86]

[Bli78]

[BoK70]

[BrB84]

[CPC841

[Coo84]

[Coo86]

[CCC]

[Cro77]

[Cro84]

[Gre86]

[HAG86]

[I-IeH84]

[HoNg5]

[Kay79]

[KaK86]

[Max86]

[NON85]

J. Amanatides, Ray Tracing with Cones, Computer Graphics
(SIGGRAPH '84 Proceedings) 18, 3 (July 1984), 129-145.

P. R. Atherton, K. Weiler and D. P. Oreenb~rg, Polygon Sha-
dow Generation, Computer Graphics (SIGGRAPH "78
Proceedings) 12, 3 (August 1978), 275-281.

P. Bergeron, A General Version of Crow's Shadow Volumes,
IEEE Computer Graphics and Applications 6, 9 (Sept. 1986),
17-28.

J. F. Blinn, Simulation of Wrinkled Surfaces, Computer
Graphics (SIGGRAPH '78 Proceedings) 12, 3 (August 1978),
286-292.

ft. Bouknight and K. Kelley, An Algorithm for Producing
Halftone Computer Graphics Presentations with Shadows and
Moving Light Sources, SJCC, AFIPS 36 (1970), 1-10.

L. S. Brotman and N. I. Badler, Generating Soft Shadows with
a Depth Buffer Algorithm, 1EEE CG&A, October 1984.

R. L. Cook, T. Porter and L. Carpenter, Distributed Ray
Tracing, Computer Graphics (SIGGRAPH '84 Proceedings)
18, 3 (July 1984), 137-145.

R. L. Cook, Shade Trees, Computer Graphics (SIGGRAPH '84
Proceedings) 18, 3 (July 1984), 223-231.

R. L. Cook, Stochastic Sampling in Computer Graphics, ACM
Transactions on Graphics 5, 1 (January 1986), 51-72.

R. L. Cook, L. Carpenter and E. Catmull, An Algorithm for
Rendering Complex Scenes, submitted to SIGGRAPH '87.

F. C. Crow, Shadow Algorithms for Computer Graphics,
Comp,ter Graphics (SIGGRAPH "77 Proceedings) 11, 2
(1977).

F. C. Crow, Summed-Area Tables for Textm-e Mapping,
Computer Graphics (SIGGRAPH '84 Proceedings) 18, 3 0uly
1984), 207-212.

N. Greene, Applications of World Projections, Graphics
Interface '86, May 1986, 108-114.

E. A. Haines and D. P. Greenberg, The Light Buffer: A Ray
Tracer Shadow Testing Accelerator, 1EEE CG&A 6, 9
(September 1986), 6-15.

P. S. Heckbert and P. Hanrahan, Beam Tracing Polygonal
Objects, Computer Graphics (SIGGRAPH '84 Proceedings)
18, 3 0uly 1984), 119-127.

J. C. Hourcade and A. Nicolas, Algorithms for Andaliased Cast
Shadows, Computers & Graphics 9, 3 (1985), 259-265.

D. S. Kay, A Transparency Refraction and Ray Tracing for
Computer Synthesized Images, master's thesis, Comell
University, Ithaca, New York, 1979.

T. L. Kay and J. T. Kajiya, Ray Tracing Complex Scenes,

Computer Graphics (SIGGRAPH '86 Proceedings) 20, 4 (Aug.
1986), 269-278.

N. L. Max, Atmospheric Illuminadon and Shadows, Computer
Graphics (SIGGRAPH "86 Proceedings) 20, 4 (August 1986),
117-124.

T. Nishita, L Okamura and E. Nakamae, Shading Mtxlels for
Point and Linear Sources, ACM Trans. on Graphics 4, 2 (April
1985), 124-146.

lPix86]

[Pix87]

[ReB85]

[RuW80]

[Whi80]

[wn783

[Wi183]

Pixar, Luxo Jr., July 1986.

Pixar, Red's Dream, July 1987.

W. T. Reeves mad R. Biau, Approximate and Probabilisdc
Algorithms for Shading and Rendering Structured Particle
Systems, Computer Graphics (SIGGRAPH '85 Proceedings)
19, 3 Ouly 1985), 313-322.

S. M. Rubin and T. Whitted, A 3-Dimensional Representation
for Fast Rendering of Complex Scenes, Computer Graphics
(SIGGRAPH '80 Proceedings) 14, 3 (July 1980), 110-116.

T. Whirred, An Improved Illumination Model for Shaded
Display, Communications of the ACM 23 (1980), 343-349.

L. Williams, Casting Curved Shadows on Curved Surfaces,
Computer Graphics 12, 3 (August 1978), 270-274.

L. Williams, Pyramidal Parametrics, Computer Graphics 17, 3
(July 1983), 1-11.

291

