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This article discusses and applies the Kuhelka Munk theory of pigment mixing to computer
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color m]xing arc discussed and are shown to be insufficient for pigmented materials. The
Kubclka Munk theory of pigment mixing is developed and the relevant equations arc derived.
pigmer]t mixing experiments are performed and the results are displayed on cokw tekm’ision
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1, INTRODUCTION

The illumination model in computer graphics is constantly being refined so
that it provides an ever more accurate model of reality. However, no illumina-
tion model will work unless the objects in the scene have been properly
described. This fact has been realized and the surface properties of objects
have been painstakingly modeled, especially as they relate to reflection
direction and strength. But a comprehensive approach to object modeling
should also take into account the physical makeup of those surfaces. In
particular, most manufactured objects in the real world have pigmented
surfaces, such as painted items, plastic objects, and textiles. To accurate] y
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model the color of any pigmented object, the physical interactions within the
pigmented surface must be included.

A straightforward way of specifying color in a graphics scene is via the
common red, green, and blue ( RGB ) triplet. This approach is the easiest to
deal with in scene generation computations, since this specification is exactly
what is needed by the computer to generate colors for the screen output. But
this method is far removed from reality—the RGB method is only appropri-
ate for additive colorants, such as colored lights (e.g., the phosphors in the
monitor screen); nonemitting objects should be specified in terms of their
reflective and transmissive characteristics.

A second approach for specifying color is in cyan, magenta, and yellow
( CiWY ) space. This specification is in the domain of subtractive color synthe-
sis and accurately models the effect of light transmission through a colored
surface. This specification is especially important with respect to the color
reproduction industry. For instance, color printer manufacturers must deal
with translating images from the domain of computer monitors (in which all
colors are RGB ) to the domain of hardcopy devices, in which the colors must
be specified in CMY coordinates (Stone, et al., 1988). This subtractive method
is also used in some screen-based painting applications, such as Small (1991)
and some commercially available programs, as a better attempt to model
realistic color mixing. However, as will be shown in this paper, this method is
insufficient for representing pigmented surfaces, since CMY color synthesis
works best for purely transmitting materials; pigmented surfaces have both
transmitting and reflecting characteristics.

The most accurate way of dealing with light in a synthetic imaging
application is on a wavelength-by-wavelength basis [8, 14, 19]. It is only in
this way that the more subtle illumination modeling and color calculation
problems can be handled. The spectral energy distributions of the light
sources in the environment must be given and the spectral reflectance,
transmittance, and absorptance of the surfaces with which these light sources
interact must be specified. Pigment mixing is an example of an optical
phenomenon which must be modeled in this way. The Kubelka-Munk theory
is used by the paint industry to predict the reflectance that will result when
two or more pigments are mixed. This theory has been discussed within a
computer graphics context [12] but has not been used to solve color synthesis
problems.

In this paper we introduce the Kubelka-Munk theory of pigment mixing
and apply that theory to computer graphics to facilitate correct-color calcula-
tion for realistic image generation. Section 2 develops some of the significant
differences in additive and subtractive color mixing and discusses the need
for different mixing theory for pigmented materials. Section 3 introduces and
develops the Kubelka-Munk theory of pigment mixing. Section 4 discusses
the pigment-mixing experiments carried out for this project. Section 5 intro-
duces the topic of color matching with respect to pigments; given a sample
color, it is possible to calculate a pigment mixture that will render an
approximation to this color. The final section provides a summary.
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Fig. 1. Color television monitor gamut  in CIE XYZ space

2. SUBTRACTIVE  COLOR MIXING

The human  visual  system  contains  three  types  of daylight receptors,  called
cones. The spectral  sensitivity functions  of the three  cone types  are different,
but they  do overlap  significantly.  Because  there  are only  three  types  of cones
to sample  the entire  visible  spectrum, it is possible  for two different  spectral
energy  distributions to produce  the same three  cone signals.  When  this
happens  the visual  system  is unable  to distinguish  between  the color  sensa-
tions evoked,  and the spectral  energy distributions are said to be metamers.
This means  that satisfactory color reproduction  can be achieved  without
having  to perfectly  reconstruct the original  spectral  energy  distribution.  In
fact, the number,  shape,  and position  of the spectral  sensitivity functions
make it possible  to reproduce  most  colors  by manipulating only the short,
medium,  and long wavelength  regions  of the spectral  energy  distributions
used to create  the reproduction.

The most  straightforward way of controlling the energy  in these  three
different  portions  of the spectrum  is to combine the light  from three  sources.
This approach,  which  is called  additive  color  synthesis,  is used in the stan-
dard cathode  ray tube of color  televisions  and monitors where  three  electron
guns  independently  address  the short,  medium, and long  (blue,  green,  and
red)  areas  of the spectrum.  For instance, in combining a light  from the short
wavelength  region with one from the medium  wavelength  region,  a spectral
energy  distribution  is produced  which  elicits  the visual  sensation  of cyan. The
color  television  monitor gamut produced  by additively  mixing the light  from
the three  red,  green,  and blue primaries  is shown  in Figure 1.

A more indirect  way of controlling the energy in the three  different  spectral
regions  is to place  a stack of three  filters  in front  of a light  source.  This
approach  is called  subtractive color  synthesis,  because  information  is re-
moved  from the spectral  energy  distribution of the light  source.  This  ac-
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complishes the same goal as additive color synthesis but does not allow
completely independent control of the short, medium, and long wavelength
regions of the spectrum. For instance, suppose two subtractive colorants are
used—cyan and yellow—the cyan colorant transmits energy in the medium
and short regions of the spectrum (similar to the cyan produced in the
additive example above), and the yellow passes energy in the long and
medium regions. By combining these colorants in subtractive color mixing
(further explained below), we derive a colorant which controls energy in the
medium region and we see a green color; essentially, the short and long
spectral energy present in both components was subtracted from the final
result. Again, the visual system is being stimulated by selectively manipulat-
ing particular regions of the visible spectrum.

The example of the colored filter given above is a very simplified view of
subtractive color. Instead of talking about the long, medium, and short areas
of the visible spectrum, we can quantify the characteristics of a given
subtractive colorant on a wavelength-by-wavelength basis. In particular, at
each wavelength of the visible spectrum, the colorant will allow some given
percentage of light energy to pass through. This information, plotted graphi-
cally with wavelength versus the percentage of light passed through the
material, gives us the transmittance curve for that filter. An example of such
a curve is seen in Figure 2, where we see that more light energy toward the
lower end of the spectrum is allowed to pass than light energy at the higher
end. Thus, given a light source which emits equal energy at all wavelengths,
the resulting color of the light passing through the example filter would be
cyan.

These subtractive colorants are made from some clear material in which a
colored substance is dissolved at a given concentration. The transmittance
data discussed above assumes a given thickness of the colorant layer, h, and
a given concentration, c, of the colorant. If we change either of these variables
—the thickness or the colorant concentration—we would expect the nature of
the transmittance of the filter to change as well. These transmittance changes
are described by the Bouguer and Beer laws. Bouguer’s law states that given
a transmittance T at a particular wavelength and a thickness h, the trans-
mittance at a thickness of nh at that wavelength is Tn. Similarly, Beer’s law
states that given a transmittance T at a particular colorant concentration c
and a constant thickness, the transmittance at that wavelength is Tm where
the concentration is mc [10]. The effect of varying the concentration of a
hypothetical dye can be seen in Figure 2.

Changing the concentration or the thickness of a filter produces a locus of
tristimulus values which is much different than the collection of tristimulus
values created by varying the intensity of a light source that shines through a
filter with constant transmittance characteristics. Given a filter that corre-
sponds to unit concentration of the dye shown in Figure 2, Figure 3 depicts
the locus of CIE XYZ tristimulus values produced by changing the intensity
of the light passing through the filter. This locus is a straight line that
projects to a single point on the unit plane. This means that a single pair of
chromaticity coordinates can be used to describe the colors that are produced.
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Fig. 2. Spectral transmittances for unit thickness and varying concentration of a cyan dye.

On the other hand, when the light source remains constant and the concen-
tration of the filter varies, the locus of CIE XYZ tristimulus values shown in
Figure 4 results. The projection of this space curve onto the unit plane
produces a curved line segment. This indicates that the color produced by the
filter is changing and no single pair of chromaticity coordinates can fully
describe the situation.

Calculation of subtractive colorant mixtures is analogous to subtractive
concentration calculations, as above. Whereas, in the case of varying concen-
trations, we multiply the transmittance at every wavelength by itself for
every unit of concentration, subtractive mixtures require the multiplication of
transmittances of the different colorants in the mixture. It is helpful to think
of this process in terms of separate colored filters. Light passing through each
filter is multiplied by the transmittance of that filter (taking into account
whatever concentration of thickness that filter has), then the process is
repeated for each additional filter (and color). In Figure 5 we see the effect of
mixing the cyan dye from Figure 4 with two other dyes. The gamut produced
by varying the individual concentrations of the colorants is substantially
different from the additive color-television monitor gamut shown in Figure 1.
The difference in shape between the additive and subtractive gamuts illus-
trates the linear versus nonlinear dichotomy that exists between these two
approaches to color mixing.

Water color paints can be modeled using subtractive color mixing, because
the paint is usually transparent enough to allow light to pass to the substrate

A(’M Transactions on (;raphim, Vol. 11, .?Jo.4, october 1992.
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Fig. 3. Locus of values in CIE
XYZ space resulting from shining
a light of varying intensity
through a cyan filter with con-
stant concentration. The intersec-
tion with the unit plane is a
single point.

Fig. 4. Locus of values in CIE XYZ space resulting from
shining a light of constant intensity through a cyan filter
of varying concentration. The intersection with the unit
plane is a curved line.

Fig. 5. Gamut produced in CIE XYZ space by mixing
varying concentrations of cyan, yellow, and magenta dyes.

and reflect back through the paint appropriately colored with respect to the
transmitting properties of the watercolor [lo]. Pigmented materials such as
artists’ oil paints, on the other hand, do not work as well within the
subtractive domain. The preceding discussion assumed that the materials
involved were transparent and allowed light to pass through the substance,
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I I

Fig. 6. Light interactions within a pigmented material (after Evans, 1948),

selectively absorbing light energy at certain wavelengths; but pigmented
solutions consist of opaque particles in a transparent medium, quite different
from the completely transparent solutions of subtractive colorants.

To understand pigmented solutions, we must look at them on a particle
level. Each pigment particle has both absorbing and reflecting properties.
The absorption of a pigment particle is related to its transmittance, because
absorption is equal to 1 minus the transmittance. But in addition to this
absorption effect, there is the effect of selective reflectance, or scattering, of
light energy. Scattering is the property that determines how much of the
incident light is reflected from the surface of the pigment particle per
wavelength. Each of these two factors (illustrated in Figure 6) can be de-
scribed by spectral curves which describe the percentage of energy absorbed
or scattered by the pigmented solution at each visible wavelength. Together
these absorption and scattering properties produce spectral reflectance char-
acteristics which create the color that we observe.

The problem in making calculations based on these properties is that each
pigment particle in the solution has the properties of scattering and absorp-
tion. In the case of the transparent solutions discussed previously, the
colorant was completely dissolved in the solution or material. But in the case
of pigments, the pigment material is ground up finely and distributed
throughout some filler, such as linseed oil in the case of artists’ oil paints.
Making calculations based on the independent properties of scattering and
absorption for every pigment in the solution would require accounting for the
size, density, and shape of every particle. One of the theories of scattering
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and absorption of materials, the Mie theory, uses this information to calcu-
late various properties of individual pigment particles. But this level of detail
is somewhat too complex for calculating information about pigment solutions
[17]. Some other means to calculate the absorption and scattering for the
overall material would be very beneficial. This, then, was the motivation for
the work done by Kubelka and Munk.

3. KUBELK+MUNK THEORY

Instead of looking at pigmented solutions on a particle level, Kubelka and
Munk observed the effects of light energy in the entire solution. This ap-
proach incorporated the ideas behind the pigment particle scattering and
absorption interactions, but allowed a much easier and more comprehensive
calculation of entire pigmented systems. By using this approach, Kubelka
and Munk came up with the equations that are still used in the pigment
industry today.

Kubelka and Munk examined what happens as light traverses a thin layer
of paint applied over a substrate. At any location in the paint, light from the
surface is moving deeper into the material and light that has reflected from
the substrate is traveling back toward the top of the film. A certain fraction,
K, of the light traveling in each direction will be absorbed by the material,
and another portion, S, will be scattered. Light from each direction that is
scattered is assumed to contribute to the amount of light traveling in the
opposite direction. A set of differential equations were written as a result of
this analysis. A complete derivation of these equations is given in the
Appendix.

For complete hiding (i.e., when the pigment layer is so thick that the
substrate cannot be seen), the solution of the differential equations for the
reflectance, R=, is

/( )K2 K
R.=l+; –

F
+2F.

This is often rewritten as:

K

()
(1 - R.)2

z= 2R. “

(1)

(2)

Using Equation 1, we can now derive the spectral reflectance of any pig-
mented material at complete hiding if we know its respective K and S values
(and the spectral properties of the solution in which the pigments are
immersed). These are the equations that were used for all of the work
reported in this paper. Solutions to the differential equations can also be
found for the case in which the spectral characteristics of the base material
affect the spectral composition of the entire system [ 16].
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We can find the properties of mixtures of pigmented solutions by
fact that combinations of absorption and scattering are linear [9]:

K,v = ~ K, c,
1–1

Sw= ~ s,c,
,=1

and

K

(-)

X: ,K, c,

s ~= L; ,S,c,

where

Kiv absorption of pigment mixture

SM scattering of pigment mixture

n number of pigments in mixture

313

using the

(3)

(4)

(5)

(’, concentration of i th pigment in mixture by weight of dry pigment

K, absorption of i th pigment

s, scattering of ith pigment.

Each equation is calculated for each wavelength. The use of these equations
in predicting mixtures and matches of colors is covered in later sections of
this paper.

It is helpful at this point to look at the K and S values more closely in
terms of their significance and their calculation. First of all, the units of K
and S are not important for the purposes of these equations. As they are
always used in conjunction with each other for the Kubelka–Munk equations,
their significance is in their ratio. This simplifies the gathering of the
absorption and scattering data significantly; instead of having to measure the
actual units of K and S for any particular sample, we can use the equations
above and spectral reflectance curves to derive unitless K and S values [ 15].

For example, to derive the K and S values for the titanium dioxide
pigment used throughout this work, S was set equal to 1 at all wavelengths
and K was determined by using a given spectral reflectance curve for R [ 11]
and Equation 2 above [ 15]. Once the K and S data for one pigment (titanium
dioxide, in this case) has been calculated, the K and S for any given pigment
may be derived, using the equations above and data for the spectral re-
flectance of various mixtures of the known pigment with the pigment in
question. In the case of cadmium yellow medium, one of the primary pig-
ments used in this project, two spectral curves were used [ 11]: one of
cadmium yellow medium as a masstorze (i.e., a pure pigment) and one of
cadmium yellow medium as a tint (i.e., mixed with titanium dioxide in a
given ratio). By using Equations 2 and 5 above, and knowing the K and S
values for titanium dioxide and the relative concentrations of the pigments in
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the tinted sample, there were two equations in two unknowns, and the K and
S values for cadmium yellow medium were solved for appropriately.

Again, the actual units of K and S are irrelevant as long as the relative
proportions of the factors are correct. However, pigment data gathered from
different sources must be used with caution. For instance, if the data for two
different pigments were gathered from different sources (perhaps computed
using two different sets of K and S data for titanium dioxide), the pigments
should not be used together in the same equations. Unfortunately, the data
required by the Kubelka–Munk equations must be extremely accurate, and
gathering such data can be very difficult. The method of calculating K and S
given above is very straightforward, but those K and S values will only be as
good as the spectral curves on which they were based. Moreover, the data
must be consistent across pigments. For example, if titanium dioxide is used
as the tinting agent in the K and S calculations, any insufficiencies in the
data for titanium dioxide will be reflected in unsatisfactory data for all other
pigments that used these values in their own K and S calculations.

There are many areas in the process of data gathering which must be
handled carefully. To begin with, the measurement of pigment data must be
consistent with its proposed use. For instance, since this research uses oil
paints for examples, we gathered data from oil paints. Spectral curves that
describe the reflectance for those pigments in other solutions are insufficient
for our purposes. Also, the mixing of the pigment compounds is important;
the ratio of pigment to solution as well as the ratio of pigments in tints could
affect the outcome. Application of the pigment compounds to the measure-
ment background is also problematic; a layer of the pigmented solution which
does not completely hide the background will be affected by that background
color. Measuring the spectral curve for the mixture is another important
area. The accuracy of the measuring device in addition to the suitability of
the lighting and viewing conditions can strongly affect the outcome of the
measurements.

Several simplifying assumptions were made in the theory and equations
developed by Kubelka and Munk. First of all, the pigmented solution is
treated as a uniform material, assuming complete dispersion of pigment in
the solution and homogeneous density of pigment particles. In reality, vari-
ous forms of deviations from this idea can occur, including flocculation
(clumping) and floating of the pigment particles [211. Second, diffuse lighting
and viewing conditions are assumed, and there is no account for surface
reflection. Finally, the pigment surface is assumed to be planar, with no light
escaping from the edges of the surface. This case is seen in the above
assumption that light energy is either undisturbed, absorbed, or scattered.
These assumptions are discussed more fully in [4] and [21].

Further work has been done on the Kubelka–Munk equations and its
shortcomings. An important example is the work of Saunderson [24], in
which a formula was proposed which attempts to account for both external
and internal surface reflection. This formula is used to adjust the measured
reflectance from which K and S are determined. Given the Fresnel re-
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tlectance equation:

where

n , refraction index of the external medium (i.e., the air)

nz refraction index of the internal medium (i.e., the oil).

Saunderson’s formula is as follows:

R“, –kl
R,=kl+

1 –kl –ky +kzR,~

(6)

(7)

where

R, theoretical reflectance; spectral reflectance adjusted for use in deter-
mining K and S

R,,, measured reflectance; spectral reflectance measured by a spectropho-
tometer

k[ front-surface reflectance of the film

kz internal reflectance of the film.

4. PIGMENT MIXING

Given a set of pigments with absorption and scattering data, we can calculate
the absorption and scattering curves for any specified mixture of the pig-
ments using Equations 3 through 5 in the previous section. The K and S
curves for these pigments can then be used to derive the spectral curves for
the mixtures using Equation 1. Finally, the colors of these mixtures can be
displayed on the computer monitor by converting the spectral curve to CIE
XYZ coordinates and then transforming into the RGB primaries of the
monitor. This ability to calculate correct pigment mixtures and display those
results accurately on the monitor means that we can now bring the world of
realistic color selection and mixture into computer graphics. For instance,
artists could use their experience with paints and palettes to select and mix
colors on the computer just as they would in the studio; they are no longer
limited to the RGB additive color selection methods that monitor technology
has imposed.

The difference between organic and inorganic paint mixtures provides a
good example of why it is critical to use Kubelka-Munk theory to predict
pigment mixtures. This organic/inorganic distinction is an important one for
artists; mixtures of white with inorganic paints tend to “gray” out much more
than those with organic pigments. For example, mixtures of napthol red (an
organic paint) with titanium dioxide and cadmium red (an inorganic paint)
with titanium dioxide can be compared. Although the red colors look very
similar in their masstone states, their respective mixtures with white are
quite different. This difference can be seen in Figure 7 where the effect is
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Fig. 7. Canvas painted  with real pigments showing mixtures  of cadmium red (top)
and napthol  red (bottom) with titanium white.  From  left  to right  the tint  concentra-
tions  were  2, 5, 10, 20, 40, 80, and 100 percent  by dry weight of pigment.

demonstrated using real  pigments.  These differences are known to those  who
use paints;  artists  choose  their palettes  very carefully based  on the types  of
colors  they would  like to produce  from paint  mixtures.

The existing algorithms that  are used  in computer graphics to simulate
paint  mixing are unable to capture this difference  between organic and
inorganic pigments.  Commercially available electronic paint programs use an
RGB instead of a spectral  representation for the paints  that are mixed.  A
weighted  average  based upon  the convolution mask of the brush profile  is
taken  between  the RGB of the paint being applied  and the RGB of the
background. Oddy  and Willis 1221 have extended  this approach  to include a
pigment  medium, but it is still an RGB averaging technique.  For efficiency,
paint  programs often  use the non-gamma corrected RGB values, which
means  that  the mixing cannot even  be described as additive.

Given  the RGB values for the pure cadmium red, napthol  red, and tita-
nium white  pigments used in Figure 7, a pigment mixing simulation that
applies  this weighted average RGB approach leads  to the result shown  in
Figure  8. Because  there  is no way to directly relate  the pigment concentra-
tions  used  to create  Figure 8 to the proportions employed in the weighted
average  RGB approach,  the color scales  in this figure were  computed  by
linearly interpolating between  the RGB values for titanium white and the
RGB values  for each  of the two pigments.  The white pigment RGB to red
pigment RGB proportions are identical for corresponding swatches  in the
two color scales,  and the initial  proportions were  selected  so that the begin-
ACM  Transactions on Graphics,  Vol.  11, No. 4, October  1992.
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Fig.  8. Result of using paint  mixing approach employed  by traditional painting programs  to
simulate the mixture  of cadmium red and napthol  red pigment with  titanium white.

ning  colors  in the real and the simulated cadmium red scales  were  close (an
exact  match  was not possible).  Note  that  because both  pigments in their
masstone  states  have  almost identical RGB values, there  is little  difference
between  the cadmium red and the napthol  red color scales  in the simulation.
Converting from an RGB to a CiWY  representation has no effect  on this
result  because  the transformation is linear.  A wavelength-based approach
that  models  the pigments as cyan,  yellow, and magenta filters is also  inca-
pable  of capturing the mixing differences between  the two pigments.

In order  to correctly model  pigment mixing in computer graphics, a
pigment-based approach,  such as the Kubelka-Munk  method,  must be em-
ployed.  This  is the only  way to include the absorption  and scattering phenom-
ena that  take place  in real paint  films. An important step in this approach  is
to obtain  data for the pigments which is suited  to the purposes  of the
application.  In our case, we were  comparing our research results  with artists’
oil paints,  so we needed  to get data for the pigments in a medium of oil.
Off-the-shelf  oil paints  can contain various ingredients in addition  to the
main pigment,  so we used pure dry pigment and linseed  oil.

To obtain  K and S data  for the cadmium red and napthol  red pigments, it
was first necessary  to create  masstone solutions for cadmium red, napthol
red, and titanium white;  this was done  by mixing linseed oil with the pure
pigments.  Next,  a tint with titanium white  was created  for each red pigment
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Fig. 9. Spectralreflectancecurvesfor titaniumwhite,naptholred, and a tint of titaniumwhite
with naptholred.

by combining measured amounts of dry pigment with oil. Spectral measure-
ments were then taken of all masstones and tints (Figure 9). From the
spectral curve for titanium white, we deduced K and S values for that
pigment by setting S equal to one at all wavelengths and solving for K. Using
these absorption and scattering values and the spectral curves for the mas-
stones and tints for each red pigment, the K and S curves were calculated as
described in the previous section (Figure 10). Finally, given the data for all
three pigments, the spectral curves for arbitrary concentrations were calcu-
lated using Equation 1.

The results of the Kubelka-Munk modeled canvas are seen in Figure 11.
This example compares favorably with the actual paint mixtures in Figure 7.
It is interesting to contrast this result with that shown for additive mixing in
Figure 8. With both the real mixtures and the Kubelka-Munk modeled
mixtures, there is a marked difference between the two stripes; cadmium red
goes to white much faster than napthol red. But in the additive mixing
example, both pigments proceed at about the same rate and the difference at
any given concentration is not very significant. These differences are quan-
tifiable, using a color difference formula. In Figure 12, we have plotted A E as
measured in CIE L*a*b* coordinates for the Kubelka-Munk and additive
pictures. We can see that the color differences between the pigment scales in
the Kubelka-hfunk experiment are much higher for the tints at smaller red
pigment concentrations. But with the additive experiment, the color difler-
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Fig. 10. K and S curves corresponding  to napthol  red pigment  shown  in Fig. 9

Fig. 11. Result  of using Kubelka-Munk  theory  to simulate the mixture  of cadmium red and
napthol  red pigment  with titanium white.
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Fig. 12. Color difference in CIE L*a*b * space between the cadmium red and napthol red scales
in Figure 8 and between the same color scales in Fig. 11.

ences remain relatively flat, showing that the mixing differences for the
pigments were not picked up by the additive mixing approach.

Another experiment that was performed for paint mixing calculations
involved modeling a color wheel which was painted using standard off-the-
shelf paints and then modeled using data for the pigments in those paints.
The color wheel (Figure 13) was thus constructed: the outer circle uses just
the three primaries-alizarin red, prussian blue, and cadmium yellow
medium—as marked on the canvas. These primaries were mixed in 50/50
proportions to derive secondaries, which lie halfway between each of the
primaries. Each secondary was then mixed with each primary to derive the
tertiaries, which complete the circle. The inner circle is composed of 50/50
mixtures of the primaries and secondaries with titanium dioxide, shown in
the middle of the wheel.

The possible gamut in CIE L*a*b* space that can be produced using these
four pigments was computed using Kubelka-Munk theory and is shown in
Figure 14. For comparison, consider Figure 15 which shows the position in
CIE L*a*b* space of the color television monitor gamut from Figure 1.
Clearly the pigments are not capable of producing colors as saturated as
those created by the monitor. It is also interesting to note that a very dark
color is also not possible using the four pigments selected. A simulation of the
canvas shown in Figure 13 was also done and is included as part of Figure 19
which is discussed in Section 6. It should be noted that both the gamut in
Figure 14 and the canvas in Figure 19 were not computed using data that we
measured ourselves but from masstone and tint curves published elsewhere
[11]. As described in the previous section, such data must be used with care,
because of differences that may exist in materials and measurement tech-
niques.

ACM Transactions on Graphics, Vol. 11, No, 4, October 1992.



Fragmented  Materials  for Realistic Image  Synthesis . 321

Fig.  13. Canvas  painted  with  real pigments showing mixtures  of cadmium yellow  (12
o’clock),  alizarin red (4 o’clock),  prussian blue (8 o’clock),  and titanium white  (center).

There  are many potential uses  for this approach  to color  mixing.  One of
these  applications is in computer painting programs; as the organic/in-
organic mixing experiment pointed out, much more realistic results can be
derived  by using these  pigment mixing techniques than by using current
painting program mixing techniques. One such application that has been
developed  is an airbrush program that uses  the Kubelka-Munk approach  to
color  mixing to predict realistic mixing of colors  on the painting canvas.

Instead  of using arbitrary RGB colors  for the painting tool,  the user selects
colors  from among a palette  of available  pigments (Figure 16). This palette  is
limited  only by the pigment data  available  to the program.  When the user
selects  a color,  the K and S data for that pigment is loaded  into  the airbrush.
Painting then  occurs in the usual paint  program manner except  that,  where
colors  overlap  on the canvas, their mixture is correctly computed and dis-
played.  This  is accomplished by having each pixel,  as well as the brush, keep
track of its own current K and S values.  When any pixel  is painted  over,  new
K and S values are calculated using the data  for the brush and the pixel and
Equations 3 and 4. Then  the reflectance of the pigment mixture is deter-
mined,  the RGB tristimulus values are found,  and the appropriate  color is
displayed  in that pixel.

This painting program uses  a K and S frame  buffer technique which stores
the current K and S values  for each pixel  at four specific wavelengths. These
wavelengths were  selected  to compute tristimulus values  from spectral  en-
ergy  distributions by using Gaussian quadrature [19]. Limiting the wave-
length  information is necessary for the purposes of real time interaction and
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Fig.  14. Gamut produced  in L*u*b* space  by mixing
varying concentrations of cadmium yellow,  prussian blue,
alizarin red,  and titanium white.

Fig.  15. Color  television monitor  gamut in L*a*b* space.

conservation  of memory  resources.  Since the pigment  reflectances  are quite
smooth,  the errors caused by this low sampling  rate are minimized. The
program also manipulates  the floating  point K and S values in appropriate
integer form to save memory resources. Future hardware  developments  may
make  it possible  to avoid these optimization  methods and still  maintain good
performance.

5. COLOR MATCHING

Most  scene  generation  in computer  graphics  involves specification  of object
color by RGB triplets;  this method is certainly  an easy way to pick a color,
ACM  Transactions  on Graphics,  Vol.  11, No.  4, October  1992.
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Fig.  16. Airbrush  program  showing pigment  selection,  current  brush  color,
and artwork  being worked  on.

Fig.  17. Use of a hue,  saturation,  and brightness color  model  to select  a color  to
be matched.  Program  mixes  pigment  concentrations  to generate  a reflectance  that
will  create  the desired  color.

and it is also readily  interpreted  by the computer during scene computation.
However, when  color fidelity  is critical  and when  rendering techniques, such
as ray tracing and radiosity are being used,  a wavelength based  approach  to
specifying  color  is necessary.  A database  of spectral  reflectances can be
created  [20]  to facilitate  the use of such curves in image synthesis.  Colors
available  when  such an approach  is used  are limited  to the number of curves
in the database.  The number of possible  colors  can be increased, and the
number of curves in the database  can be decreased,  by storing pigment data
instead  of individual  reflectances.  Pigment mixtures can be determined  by
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using the techniques described in the previous section. However, speci&ing
color in terms of pigment concentrations is not very intuitive for most people;
if a particular shade of red is imagined for some plastic object in the scene,
the typical computer user would probably not be able to come up with
appropriate pigment concentrations which would produce this particular red.

What is required is a method for interpreting the user’s intuitive color
designation and then producing a pigment specification. This problem is
known in the pigment industry as “color matching.” In standard color match-
ing problems, a sample of color is presented and a match is computed which
most closely approximates that color. For instance, if you want to repaint
part of your house but do not have the original paint, the paint store could
give you a mixture which approximates that color using potentially very
different pigments than were used originally. What we need to do in com-
puter graphics matching is analogous. For example, in creating a graphics
image, the user may want to specify the color of a wall using RGB values
(which could be textually or graphically entered, depending on what user
interface tools were available for the scene description). Then the matching
program would convert this color into concentrations of whatever pigments
provided the best match.

From the preceding sections of this article it is clear that, given a set of
pigments about which the proper data is known, we can predict the outcome
of mixtures of those pigments. Therefore it is reasonable to assume that we
can use these capabilities to calculate color matches with the pigments-that
is, given certain data about an arbitrary color, it is possible to specify which
pigments and concentrations are required to approximate the closest match
possible to that color.

For this project, we wanted a program that would allow the user to specify
a color in terms of its color space coordinates, either RGB or CIE XYZ. An
important additional feature was to give the user a graphical interface for
this specification, so that the user did not have to know the actual coordi-
nates but could choose the color interactively and visually. The program
would also allow the user to specify various parameters and constraints for
the program to use in calculating the match, such as how close the match
should be and which set of pigments to use. Given this color specification, the
program would compute the best color match with the given set of pigments.

There are several possible approaches to this matching problem. They
differ in the types of data required for the computations, the computational
complexity involved, and the suitability of the results. The most straightfor-
ward approach to solving the problem is to iterate through the set of
available pigments, calculate their mixtures in all possible combinations and
concentrations, and choose the mixture that comes the closest to matching
the sample. Although this brute-force method is certainly the slowest possi-
ble, it is also the most accurate; since all possible mixtures are checked, the
result is the most correct. In addition, this method provides the greatest
flexibility in terms of the data required for the calculations, because data
about the sample can be provided in any suitable form. The calculations
depend on the data only to the extent that it is needed to see how close a
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mixture has come to matching the sample. The search time can be limited by
various means, including: restricting the set of pigments being searched,
halting calculations when a mixture comes within some specified tolerance,
and having the program intelligently direct the search based on some criteria
such as pigment suitability. Although these methods can shorten the search
time significantly, a much more efllcient method is required.

Another approach to color matching is spectrophotometric matching [2, 5,
17, 23, 27], in which the calculations attempt to find a match with a spectral
curve that best fits the spectral curve of the given color. While the algorithm
used for this approach is much more eflicient than the brute-force approach
described above, the data required for the calculations are not appropriate for
our application. Since the color we would like to match may be specified only
in terms of CIE XYZ or RGB, we do not necessarily have a characteristic
spectral curve to match against. Clearly, another method is needed.

Tristim UIUSmatching, a better approach, is the one taken in most of the
color matching references used in this research, including [2, 3, 13, 17, 18].
Just as in spectrophotometric matching, this method intelligently narrows
down the search using a steepest descent method of optimization to find the
best match for a set of pigments. But this method also has the advantage of
requiring that only the tristimulus coordinates of the sample color be matched.
Tristimulus matching makes a linear approximation of the nonlinear func-
tions involved in the Kubleka-Munk equations, so it may require several
iterations to arrive at an answer (if a match is possible). Each iteration
results in a new trial match which is then compared to the sample using
some color difference formula. If the trial is not within a pre-specified
tolerance, then a new match is calculated. If at any time the concentration
values of any of the pigments become negative, then a match with these
pigments is not possible.

While this method is adequate for many cases of color matching, it has
some disadvantages. Most significantly, this approach as described in the
literature is limited to a given set of three pigments plus white. To use the
formulas as is, a general match from a larger set of pigments could only be
derived by iterating through the set of pigments, coming up with the best
match from all sets of three. But in a general color-matching case, this may
be terribly inefficient; a large pigment database would require a substantial
calculation time to find the best match. Furthermore, the user may not
necessarily want to be limited to three pigments in the resulting color match.
If a better match could be derived from a larger set of pigments, then it would
be helpful to provide that match instead.

Another problem with the tristimulus method is that the amount of change
required in the pigment concentrations for the next match is based on the
absolute differences between the CIE XYZ coordinates of the current trial
match and the sample match; a color difference formula is used to judge
whether the trial is a good match, but CIE XYZ coordinates are used to
derive each new trial. The color difference formula would be a better metric to
use in deriving the trial matches as is done in Cogno et al. [7]. Finally, it is
important to account for metamerism in any color match. Metamerism is the
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degree to which a color changes in different lighting and viewing conditions.
Usually, we do not want a color to appear very different across environments,
so we would like to limit the degree of metamerism to some tolerance level.

A matching algorithm must therefore take into account an arbitrarily large
set of pigments, make better use of the color difference formula, and have the
ability to control the degree of metamerism. Its main goal, of course, is to find
a match which is as close to the sample color as possible. In other words, the
color difference should be equal to zero. Therefore, we need to minimize the
color difference function.

The CIE L*a*b* color difference formula [28] is:

AE = [( Aa*)2 + (Ab*)2 + (AL*) 2] ’/2

where

()
1/3

L* = 116 ; – 16

a*=500[Ei3-Er31

b*=200[(~r3-(:r31

(8)

(9)

( 10)

(11)

and

x, Y, z tristimulus values of the color in question

XO, YO,ZO tristimulus values of the light source

Aa*, Ab*, AL* differences in values between colorants.

First we note that minimizing this value can also be achieved by minimizing
its square, A E2, thus we can eliminate the square root from Equation 8. To
find the minimum for A E2, any of several numerical methods may be used.
We used the method of steepest descent, which follows the negative of the
gradient at any given point on the function to get as close to zero as possible.
This is an iterative method, like the tristimulus method explained above,
which takes guesses at minimum values and then refines these guesses by
repeated application of the same equation. Both this method and the tristim-
UIUSmethod depend on some initial guess. Allen [1] describes an algorithm to
derive an intelligent first guess based on spectrophotometric data. Lacking
this type of data, we use an arbitrary guess for the first trial, as suggested by
Billmeyer and Saltzman [6].

An important constraint which complicates the situation is that the concen-
trations of the pigments should remain positive. The tristimulus method, as
described in the references, does not attempt to find the closest match.
Instead, if a match within the specified tolerance cannot be found, its
calculations return negative values for some pigment concentrations, indicat-
ing that a match is not possible. Our method, however, should be able to
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obtain the closest match possible. This ability is especially important for
what we are trying to accomplish—matching RGB colors with their closest
subtractive approximations; many colors in RGB space may not have exact
matches with any combination of pigments. Instead of using the positive
concentration value as a constraint on the problem, though, we can rewrite
the concentration value c, as the square of some value q,. This will allow the
equations to be solved for the optimal qi values while the Ct values remain
positive. Using this technique allows us to keep the values of the concentra-
tions positive without adding a complicating constraint to the problem.

Now we can proceed with finding the gradient for A E2. This will be the
direction vector toward the minimum. For the gradient we will need the
partial derivatives of the formula with respect to the q, of each of the
pigments involved. We know that:

~AE~ I?AE2
—_— x 2q*.

~q, (?Ct
(12)

Next, by the Chain Rule:

(?AEP ~AE2 (7X dAE2 dY (?AE2 dZ
——+ ——+——~c =

dx ac, dY (?C, az dc, “1

These component partials are written as follows:

/IAE2 –lOOO Aa* + 232 AL* + 400Ab*

dY = 3Y2’’3X;’3

dAE2 –400Ab*
— .

dz 3z2/3zy3

and

(13)

(14)

( 15)

(16)

(17)

( 18)

(19)

where

(?R SMK, – KM S,

1

1

H
~=

s;

x l-& ’20)
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‘A, yA, 2A observer matching functions

SA given light source

R, spectral curve of match

KM, SM K and S for the current match trial

K,, Si K and S for the ith pigment

A wavelength; our method uses 16 wavelengths, spaced at 20 nm
increments from 400 to 700 nm.

Given the current match trial, the gradient is just a vector containing the
values for the left side of Equation 12. Some multiple of this gradient is
added to each current q, which are then used to derive new values for each
Ci. These new Ci values are used to calculate a new match trial. If the match
is within a specified tolerance of the sample or if a match is not possible but
the nearest minimum has been reached, then the program is finished. If not,
the process is repeated.

The factor by which the gradient is multiplied has a severe effect on the
calculation process, determining how fast an answer can be reached and how
good that answer is. For our program, we based the multiplier on a scalar
factor of the current color difference between the sample and the match;
trials that were further away would take longer steps than those closer in.
This method helps the program avoid overshooting the minimum and having
to backtrack. The other important consideration for the multiplier is for those
cases in which no perfect match is possible; in these cases, we would like to
derive the closest minimum. The gradient multiplier helps this process. If the
program ever overshoots the minimum, it is clear that the current step size is
too large. So a scaling factor is input into the equation which decreases the
gradient multiplier by half. Overshooting again causes another halving of the
scalar multiplier. In this way, the closer the program gets to a minimum,
whether it is a match or not, the smaller steps it will take. Execution then
continues until either a match or a minimum has been found.

A further important enhancement can be made to this approach to account
for metamerism. In order to keep the degree of metamerism as low as
possible, the function to be minimized could be rewritten as some combina-
tion of equations of the form of Equation 8, where each equation was
calculated for a different light source or viewing condition. Then minimizing
this new formula would result in a match which was minimized across these
different conditions. The effects of metamerism upon the result could be
easily changed by weighting the different components of the equation appro-
priately. For example, let us suppose that we wished to achieve a match
under CIE standard illuminant C but also wished to minimize metamerism
for CIE standard illuminant A. Let us further suppose that the metamerism
component of the match was only ~ as important as the initial match. Then
our minimizing equation would be A E2 = 4 A E$ + A E;.
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The approach we took toward color matching provided two major advan-
tages over the standard color matching techniques covered in the references.
First, we minimize in terms of a color difference formula, so the results we
get are the closest color match in terms of this formula. This is in contrast to
the tristimulus approach, which minimizes over X, Y, and Z and thus only
achieves a minimum in tristimulus space, which does not necessarily corre-
spond to a minimum color difference. Second, our formula admits an arbi-
trary number of pigments and attempts to find a suitable match from that
set, regardless of how many pigments are to be used. This is helpful in many
cases where either many pigments are required to make a match or the user
does not know which limited set of pigments would be adequate. The tristim-
UIUSmethod formula, on the other hand, requires there to be a set number of
pigments. In the usual form, this number is only three, though more could be
added for different light sources [13, 17]; in this case, the user would have to
know ahead of time which pigments were suitable or the machine would have
to iterate through a larger set of pigments until an appropriate match were
found.

There are some things about this approach, however, that would require
further development for a full-featured color matching algorithm. First, this
steepest descent approach is guaranteed to find a minimum, but it will not
necessarily be the global minimum; i.e., if there are many pigments involved
and the initial guess is far from the true global minimum, the equations
might settle on a local minimum even though a better match might exist with
some other combination. This problem can be easily addressed through
pigment choice and through the initial guess, although a more automated
way of achieving this is desirable. Also, the equation does not take into
account the cost of the pigments, which is important in many color matching
applications. Finally, there is currently no way to limit the number of
pigments used in the resulting match, other than the total number of
pigments involved; if the user inputs 100 pigments into the program, then the
result could potentially be a mixture which uses a small concentration from
each pigment.

We developed a program using the above techniques and specifications.
The user inputs several pieces of information for the search to begin. To
choose the color to be matched, the user can input color coordinates either
textually using CIE XYZ or RGB coordinates or graphically (Figure 17).
Next, the user may choose which pigments should be used in determining the
match. The tolerance level, which is the color difference in CIE L*a* b* space
below which the computer considers the match successful, can also be speci-
fied by the user. All of these selections are handled via a dialog box (Figure
17).

Using this information, the program uses the method described above,
iterating through several trial matches until a minimum is found. Data for
the closest match is displayed on the screen, including concentration values
for each of the chosen pigments, the color difference, the resulting CIE XYZ
values, a color swatch of the match color, and windows displaying the
spectral curve and color of each trial used in deriving the match (Figure 18).
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Fig. 18. Final result ofasuccessful match bythecolor matching pro@amfor acolorselectidin
the manner shown in F]g. 17. The pigments used for this match were titanium white, prussian
blue, cadmium yellow and alizann red. Successive attempts by the program to create the match
are shown.

6. CONCLUSION

The purpose of this work was to demonstrate the capabilities of realistic
pigment modeling in the field of computer graphics. Techniques used in the
pigment industry have been modified to work within the domain of computer
graphics to facilitate more realietic computer color specification. The opening
sections of this paper motivated and validated the approach taken here. The
mixing techniques discussed in Section 4 provide the basis for better, more
realistic painting programs and other tools which require mixing and display-
ing pigmented materials. Finally, the matching techniques discussed in
Section 5 show the feasibility of combining intuitive color selection with
realistic color computation in generating realistic computer images.

As a final example, consider the image in Figure 19. Using the matching
and mixing programs described in this article we can derive spectral curves
for arbitrary pigment mixtures. These curves can then be used to specify
realistic colors for materials in computer generated scenes. Every color in the
scene depicted in Figure 19 was described by a characteristic spectral curve.
Most of the objects, except the RGB monitor picture and the white canvas,
use curves which represent real pigment mixtures calculated by our pro-
grams. For example, the color wheel on the canvas is based upon the
pigments used to create the artwork shown in Figure 13. With the exception
of the color television picture, notice that unrealistic highly saturated colors
do not occur. The range of colors possible has been constrained in a realistic
way by the selection of a limited number of pigments and by the accurate
simulation of their mixing properties.
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Fig.  19. Image  demonstrating the use of pigment mixing and color  matching
techniques.  All surfaces  had spectral  retlectances  determined  from pigment  mixtures.

APPENDIX

The Kubelka-Munk equations for complete  hiding given  in Section  3 were
used to perform  the pigment  mixing work described  in this paper.  They are
derived  here from the initial  assumptions because this detail  is not available
in most  of the widely  available  references.

The situation  as it occurs  in a given  pigmented solution  is shown  in Figure
20. In this figure,  the pigmented solution  is a paint,  applied  in a uniform
thickness of x over  a substrate of reflectance R,. Let i be the incident light
which  is transmitted down through the paint,  either directly  from the source
or by scattering of light off of pigment particles.  Let j be the light which  is
returning to the surface,  either  by being reflected  off of the substrate  or
scattered  from pigment particles.

Suppose  we are examining some  very  thin sub-layer of the paint,  of
thickness  dx. The amount of light that  is lost from  i through the layer  is:

(K + S)icLx (21)

and the amount lost from j is:

(K + S)jdx

where  S is the scattering component and K is the absorption.  Now we must
add back to i and j that  light which  was scattered from light coming in the
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Fig. 20. Coordinate system used to calculate light energy scattering and absorption
inside a pigmented surface.

other direction; i.e., the light that was scattered from the incident light is
added to the light returning to the surface and vice versa. Then we have:

di=(K+S)idx– Sjdx (23)

–dj= (K+ S)jdx –Sidx. (24)

Note that since i and j represent light vectors traveling in opposite direc-
tions, the change of their signs through the film are opposite,

The solution to Equations 23 and 24 begins by setting a = (1 + K/S) and
reexpressing them as

di
—=~i–j
S dx

(25)

– dj

Sdx
=aj–i. (26)

Adding these two equations together and rearranging leads to

idj –jdi .2
— –2a$ + ‘~ + 1.

i2Sdx – 1

From the Quotient Rule, we get:

d(j/i) ‘ “2
— .

S dx
–2a< + ‘~ – + 1.

L

Setting r = j/i then gives us

dr

Sdx ‘r2
–2ar+l
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and therefore

/

dr

r’
S J dx.

–2ar+l=
(30)

We would like to know the value of the change in r as the thickness varies
from O to some arbitrary thickness t.At a thickness of O, the value of r will
simply be the reflectance of the substrate, R~. At a thickness of t, the
reflectance is equal to some R. Using integration by partial fractions we have

f

R dr 1 ~ dr

–/

1 R dr

fi~rz –2czr+l= –J2b~~r–(a +b)–2b~~r–(a– b)

~ in
(R-a -b)(R~-a+b)——

2b (R–a+b)(R~–a–b)
(31)

where b = ~az – 1. Therefore, from Equation 30

(R-a -b)(R~-a+b)
A In = St.
2b (R–a+b)(R~–a–b)

(32)

The particular thickness that we are interested in solving for is t = x, as
this thickness provides complete hiding of the substrate. We can solve for the
reflectance at this thickness, R,, as t - X:

~n(R-a-b)(R~-a+b)
= 2Stb

(R-a +b)(R~ -a-b)
(33)

(R-a -b)(R~-a+b)
~2.sth =( R-a+ b)(RX -a-b). (34)

For the following substitutions,

R=R,

RK=O

we get:

1
R. =

a+fi

——‘+%-T” (35)

This form is one variation of the Kubelka-Munk formula for computing R,.
The more common forms can be obtained from this by rearrangement and are
given in the text as Equations 1 and 2,
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