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Abstract

Spherical Fibonacci point sets yield nearly uniform point distribu-
tions on the unit sphere S2 ⊂ R3. The forward generation of these
point sets has been widely researched and is easy to implement,
such that they have been used in various applications.

Unfortunately, the lack of an efficient mapping from points on the
unit sphere to their closest spherical Fibonacci point set neighbors
rendered them impractical for a wide range of applications, espe-
cially in computer graphics. Therefore, we introduce an inverse
mapping from points on the unit sphere which yields the nearest
neighbor in an arbitrarily sized spherical Fibonacci point set in con-
stant time, without requiring any precomputations or table lookups.

We show how to implement this inverse mapping on GPUs while
addressing arising floating point precision problems. Further, we
demonstrate the use of this mapping and its variants, and show how
to apply it to fast unit vector quantization. Finally, we illustrate the
means by which to modify this inverse mapping for texture map-
ping with smooth filter kernels and showcase its use in the field of
procedural modeling.
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1 Introduction

Spherical Fibonacci (SF) point sets are a well-known approach to
generate a very uniform sampling of the sphere. A large number
of applications use this type of sample distributions on spheres,
e.g. numerical simulations on the sphere as presented by [Swin-
bank and Purser 2006], or for uniformly positioned display pixels
on spherical surfaces [Brockmeyer et al. 2013]. Additionally, the
benefits of spherical Fibonacci point sets have been recognized in
computer graphics to be well suited for quasi-Monte Carlo ray trac-
ing techniques [Marques et al. 2013].

However, these point sets possess a major drawback: In contrast
to other spherical sample distributions (e.g. cube maps [Greene
1986], Octahedron Environment Maps [Engelhardt and Dachs-
bacher 2008]), the means by which to find the closest sample point
for a given point on the unit sphere remain cumbersome. Literature
suggests that an exhaustive search is necessary [Larkins et al. 2012],
rendering these point sets ineligible for many applications. In this
paper, we present an analytic and efficient solution for this prob-
lem. We describe how the nearest and surrounding samples can be
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Figure 1: Illustration of the construction of the point set SF32
i ,

showing the mapping from the grid through a cylinder to the sphere.
The first point of the point set is marked blue.

determined efficiently for an SF point set of arbitrary size, given an
arbitrary point on the unit sphere. We address precision problems
and show how to overcome these by exploiting the unique proper-
ties of SF point sets and leveraging fused multiply-add operations.

Our inverse mapping opens the door to a number of spherical Fi-
bonacci point set applications that have been deemed impractical
up to now. We show, how unit vectors can be quantized very effi-
ciently, how spherical functions can be stored with highly improved
uniform cell sizes, and how we can apply the inverse mapping to the
field of procedural modeling. Although we focus on the illustration
of our mapping for spheres for the remainder of this paper, our in-
verse mapping can readily be adapted to hemispheres as well. As
an example, we show the application of an hemispherical variant
for normal quantization.

2 Previous Work

Phyllotactic patterns associated with Fibonacci numbers appear in
countless places in nature [Newell and Shipman 2005]. They have
been the scope of scientific investigations for several decades. For
instance, [Vogel 1979] discussed how to construct – probably the
most popular example of these patterns – the sunflower head.

[Larkins et al. 2012] surveyed various spherical data structures
for normal binning, where SF point sets were the most accurate
method. Although they improved the performance of the inverse
mapping by examining only a subset of all candidates, their ap-
proach was still resource-intensive and did not run in constant time.

In the context of numerical integration on spheres, the preeminence
of spherical Fibonacci point sets has been discussed in several pub-
lications [Hannay and Nye 2004], [González 2010]. [Marques et al.
2013] used spherical Fibonacci point sets for quasi-Monte Carlo
(QMC) ray tracing and showed that this sampling pattern is supe-
rior to other QMC sampling strategies on the hemisphere.

Various applications for procedural content generation based on
phyllotaxis were shown in [Fowler et al. 1992]. [Brockmeyer et al.
2013] approached designing and developing hemispherical displays
with printed optics by using an SF grid pixel distribution. Other
fields such as meteorology [Swinbank and Purser 2006] have also
taken an interest in SF’s admirably uniform and nearly isotropic
sample distribution. They demonstrated the feasibility of using this
grid for a Eulerian finite-difference model for shallow-water sim-
ulations. The authors also provide a comprehensive derivation of
many relations, which we based our work upon.

(c) 2015 ACM. This is the author’s version of the work.
It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was
published in ACM Transactions on Graphics 34(6),
November 2015. http://dx.doi.org/10.1145/2816795.2818131
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Figure 2: (a) Basis vectors bk on the grid (φ, z)T for n = 64. The red quadrilaterals correspond to cells of grids formed by different
consecutive basis vectors. Note that due to the horizontal wraparound b1 ≡ b2. (b)-(e) Basis vector pairs bk,bk+1 for n = 1024 and from
left to right k = 6, 7, 8, 9. Each basis vector pair forms nearly equally sized grid cells in different areas of the sphere. (f) Dominant SF basis
vector pair visualization for n = 1024 with the pole marked in red, SF samples green, and the Voronoi tessellation in light gray.

3 Spherical Fibonacci Point Sets

In the following, we limit our work to spherical Fibonacci point sets
of the form as described by [Marques et al. 2013]. The construction
rules for these sets are straightforward when using spherical coor-
dinates (φ, θ)T, for which we use the common parameterization:

P(φ, θ) = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ))T.

A visualization of the underlying geometric construction of SF
point sets is shown in Figure 1. We denominate points on the sphere
using parameters (φ, z = cos θ)T . In this space, the samples fol-
low a line (with horizontal wraparound), and a generative spiral on
the sphere. The step size along this spiral is defined in terms of the
golden ratio Φ = (

√
5 + 1)/2, the positive solution of the equation

Φ−1 = Φ − 1. A point with index i of an SF point set with n
samples is given as:

SFni = P
(
φi, cos−1(zi)

)
, (1)

φi = 2π

[
i

Φ

]
, zi = 1− 2i+ 1

n
, i ∈ {0, . . . , n− 1}, (2)

where [x] is the fractional part of x: [x] = x− bxc. Following the
work of [Marques et al. 2013], [González 2010] and [Swinbank and
Purser 2006], zi is chosen such that the first and last sample of the
point set do not coincide with the poles, since this yields an overall
more uniform configuration.

In parameter space, this grid is similar to a Rank-1-Lattice
[Dammertz and Keller 2008] in 2D. Each of these lattices has a
generative vector, but due to the wraparound the points form a 2D
lattice. As shown by [Swinbank and Purser 2006] for the case of Fi-
bonacci grids, useful basis vectors bk are the vectors between two
points with a Fibonacci number Fk as index difference – where b2

acts as a generative vector under horizontal wraparound. Figure 2a
shows the first few basis vectors in the parameter domain. These
basis vectors can be expressed as:

bk =

(
−(−1)k2πΦ−k,

−2Fk
n

)T

. (3)

An important observation is that two successive basis vectors form
grid cells with varying anisotropy. The mapping to the sphere
changes anisotropy again, depending on z. The effect on the spheri-
cal grid can be seen in Figure 2b - 2e, where distinct pairs of consec-
utive basis vectors generate nearly square cells in different areas of
the sphere depending on k and z. For each z, the pair of basis vec-
tors bk,bk+1 with the most quadratic cells is called the dominant
pair, and k the zone number of z. Figure 2f illustrates the resulting
dominant basis vector pairs varying over the sphere, which yield
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(e) Configuration at the North Pole

Figure 3: (a)-(d) Adjacency matrices of the Delaunay triangula-
tions for different n. The tessellation at the poles becomes con-
stant for n ≥ 16. (e) Close-up of the topology at the North Pole
(green) showing the geometry generating the bounds ∆max and
∆min. Straight lines in this image represent great circular arcs.

nearly isotropic local grids. These local grids are the foundation of
our inverse mapping (Section 4). In line with [Swinbank and Purser
2006], we derive the zone number for our parameterization by ex-
pressing the basis vectors in terms of local Cartesian coordinates:

b̂k =

(
−(−1)k2πΦ−k

√
1− z2,

−2Fk
n

1√
1− z2

)T

. (4)

To be able to derive the dominant zone number k̂, we use the ap-
proximation Fk ≈ Φk/

√
5, as shown by [Swinbank and Purser

2006]. As carried out in detail in the appendix, we compute the
derivative of ‖b̂k‖22 and set it to zero, yielding the real-valued zone
number k̂ as:

k̂ = logΦ2 (
√

5nπ sin2 θ) = logΦ2

(√
5nπ(1− z2)

)
(5)

The zone number changes smoothly, resulting in a smooth transi-
tion of the local grid and thus Voronoi cells. Only near the poles
the zone number changes quickly, and the regular grid structure
gets lost. See Figure 3e for a close-up illustration of the geomet-
ric configuration at the north pole. This configuration can also be
found at the south pole in rotated form. In Figure 3a - 3d, the adja-
cency matrices of the Delaunay triangulation are shown for various
n. As can be seen, the topology near the poles becomes constant
for n ≥ 16. Since the Voronoi tessellation is dual to the Delaunay
triangulation, this property applies to the Voronoi topology equally.
The most irregular Voronoi cells are near the poles, where the zone
number changes most rapidly, but since the topology converges to
a constant configuration in the polar areas for increasing n, we ob-
serve the following bounds on the extents of the Voronoi cells: The



Figure 4: Visualization of the cells used for the inverse mapping
with n = 128 SF samples (white dots). The highlighted cells are
used for finding nearest neighbors for samples on the sphere (blue
dots) in the SF point set. White dots with a black incircle show
the found nearest neighbors. The degenerate cells near the North
Pole (red) on the sphere still yield the correct nearest neighbor. The
color gradient represents the distance to the closest SF point. We
refer to the supplemental material for an animation of this figure.

minimum incircle angle ∆min and the maximum circumcircle an-
gle ∆max – more precisely these bounds are half apex angles of
spherical cones – of all spherical Voronoi cells of an SF point set
with n ≥ 8 are given by:

∆min =
1

2
cos−1〈SFn3 ,SFn0 〉, (6)

∆max = cos−1

〈
v

‖v‖2
,SFn1

〉
, (7)

with v = (SFn2 − SFn1 )× (SFn4 − SFn1 ).

The bound ∆max is generated by the spherical Delaunay triangle
with the vertices {SFn1 ,SFn2 ,SFn4 }, whereas ∆min is half the
geodesic distance between SFn0 and SFn3 . When SF is used for
vector quantization, ∆max is the bound for the maximum error (see
Section 5.1), whereas ∆min can be used to constrain objects to their
respective Voronoi cells when SF is used in the context of procedu-
ral modeling (see Section 5.3). Figure 3e depicts the geometric
construction of these bounds.

4 Inverse Mapping

In the following, we depict how to map a point
p = (px, py, pz)

T ∈ S2 to its nearest neighbor in a spherical
Fibonacci point set by using the properties of SF grids elucidated
in the previous section. Our inverse mapping is based on the
observation that we can use the dominant basis vectors bk′ and
bk′+1 at the point of interest to retrieve a grid cell that reliably
contains the nearest neighbor. Furthermore, the direct mapping
between an SF sample’s zi = cos(θi) and its corresponding index
i enables retrieving the actual indices in the SF point set. See
Figure 4 for an illustration of the mapping.

Given a point p ∈ S2, we first compute the corresponding integral
zone number k′ from pz using Equation 5 as k′ = max(2, bk̂c)
(b2 is the first valid dominant basis vector). We construct a matrix
Bk′ from two consecutive basis vectors bk′ and bk′+1 forming the
basis Bk′ for the local grid:

Bk′ = (bk′ bk′+1) . (8)

With Bk′ , we can transform a point c = (cu, cv)T on the local grid
corresponding to a zone number k′ to its associated φ and z values
as depicted in Equation 9. We add the offset z0 = 1− 1/n such that

the coordinate c = (cu, cv)T = (0, 0)T on the grid maps to the
first point of the spherical Fibonacci point set.

Ck′(cu, cv) = (φ, z)T = Bk′(cu, cv)T + (0, z0)T (9)

Solving for c leads to the inverse transformation:

C−1
k′ (φ, z) = (cu, cv)T = B−1

k′ (φ, z − z0)T. (10)

For a given point p ∈ S2, we now compute the lowest coordi-
nate of a corresponding cell on the local grid by rounding down
component-wise:

cp = bC−1
k′ (atan2(py, px), pz)c. (11)

This cell is given by its four corners on the local grid for the zone
number k′ as: {cp, cp + (0, 1)T, cp + (1, 0)T, cp + (1, 1)T}. To
find the closest point in S2, we compute the point in S2 for each
of the four corners from its spherical coordinates given by Equation
9. In polar regions, corners that do not correspond to points in the
SF point set are ignored in further computations. The cell corner
yielding the smallest geodesic distance to p is the nearest neighbor
in the SF point set. We retrieve its index i from its z value by
solving Equation 2 for i and rounding to the nearest integer:

i =

⌊
(1− z)n− 1

2
+

1

2

⌋
=
⌊n− zn

2

⌋
(12)

This computation of the nearest neighbor remains valid, even if the
zone number changes within the cell. Figure 4 illustrates that this
is true even near at the poles.

Implementation An HLSL implementation of the inverse map-
ping can be found in Listing 1. The aforementioned algorithm is ex-
tremely prone to numerical inaccuracies if implemented with stan-
dard floating point arithmetic. Therefore, we will now show how to
implement this inverse mapping robustly. Computations involving
the golden ratio Φ and powers of Φ in particular are tremendously
fragile.

#define madfrac(A,B) mad((A),(B),-floor((A)*(B)))

float inverseSF(float3 p, float n) {
float phi = min(atan2(p.y, p.x), PI), cosTheta = p.z;

float k = max(2, floor(
log(n * PI * sqrt(5) * (1 - cosTheta*cosTheta))

/ log(PHI*PHI)));

float Fk = pow(PHI, k)/sqrt(5);
float F0 = round(Fk), F1 = round(Fk * PHI);

float2x2 B = float2x2(
2*PI*madfrac(F0+1, PHI-1) - 2*PI*(PHI-1),
2*PI*madfrac(F1+1, PHI-1) - 2*PI*(PHI-1),
-2*F0/n,
-2*F1/n);

float2x2 invB = inverse(B);
float2 c = floor(mul(invB, float2(phi, cosTheta - (1-1/n))));

float d = INFINITY, j = 0;
for (uint s = 0; s < 4; ++s) {

float cosTheta = dot(B[1], float2(s%2, s/2) + c) + (1-1/n);
cosTheta = clamp(cosTheta, -1, +1)*2 - cosTheta;

float i = floor(n*0.5 - cosTheta*n*0.5);
float phi = 2*PI*madfrac(i, PHI-1);
cosTheta = 1 - (2*i + 1)*rcp(n);
float sinTheta = sqrt(1 - cosTheta*cosTheta);

float3 q = float3(
cos(phi)*sinTheta,
sin(phi)*sinTheta,
cosTheta);

float squaredDistance = dot(q-p, q-p);
if (squaredDistance < d) {

d = squaredDistance;
j = i;

}
}
return j;

}

Listing 1: An HLSL implementation of our method for finding the
index of the nearest point on an SF point set of size n.



The vector bk can be reformulated (see the appendix) such that we
can avoid powers of Φ in its direct computation, where we only
need a power of Φ to compute the k-th Fibonacci number as Fk =
bΦk/

√
5 + 1/2c:

bk =

(
2π

[
Fk + 1

Φ

]
− 2π

Φ
,
−2Fk
n

)T

. (13)

Since the computation of the angle φ is also prone to precision prob-
lems for larger n, we only use Equation 9 to recover the z value for
each cell corner and then recompute its index i in the SF point set
with Equation 12. This rounding step yields the maximum possible
precision since we now simply recompute (φi, zi)

T.

Additionally, we leverage the higher precision of fused multiply-
adds (FMA/mad), which implement the operation mad(a, b, c) =
a · b + c at a level of precision higher than that of multiplication
followed by addition; this would involve two rounding steps instead
of one. FMA operations are present in many current architectures,
particularly in GPUs. Therefore, we rewrite terms in the form [a · b]
as mad(a, b,−ba · bc). For example, the term

[
iΦ−1

]
is computed

as mad(i,Φ− 1,−bi(Φ− 1)c) using the property Φ− 1 = Φ−1.

Furthermore, we avoid the rejection of invalid neighbor candidates
(i.e. |z|> 1) lying outside the SF point set in the polar regions
by mirroring the cell corners’ z values at the polar axis to valid
samples. This step is not required to retrieve the correct nearest
neighbor, but simplifies the implementation. Instead of measuring
geodesic distances on the sphere, we use squared euclidean dis-
tances, yielding the same nearest neighbors while avoiding preci-
sion problems.

Our implementation relies on the min(a, b) and max(a, b) im-
plementations to return the non-NaN-valued parameter, if one of
both parameters is NaN (not a number). Additionally, we assume
atan2(0, 0) = NaN. These requirements hold true for current Di-
rectX/HLSL implementations. Otherwise, points lying exactly on
the poles must be addressed separately. In our experiments, the
GPU implementation yields correct results for arbitrary n ≤ 221.
From that point on, it works for power of two values up to n = 223.
The underlying cause for this is the limited precision of 32-bit float-
ing point values.

5 Applications

5.1 Unit Vector Quantization

Since memory bandwidth is a bottleneck in rendering applications,
e.g. in the context of g-buffer compression, unit vector quantization
can be used for normal compression. [Meyer et al. 2010] showed
that the common representation of a three-dimensional unit vector
with 3 · 32 = 96 bits is highly redundant, because only 51 bits are
required to achieve the maximum possible floating point precision.
For a survey on unit vector quantization see [Cigolle et al. 2014].

In general, there are two objectives for any quantization scheme:
precision and performance. To minimize error and thus maximize
precision, a uniform distribution of the representatives is necessary.
Although there are methods that aim to minimize the global quanti-
zation error through lookup tables, e.g. [Smith et al. 2012], our ap-
proach enables constant time encoding and decoding without possi-
bly huge lookup tables or heavy precomputations. Encoding with
SF works as follows: Given a vector p ∈ S2 and the number of
representatives n used for encoding, we apply the inverse mapping
(Section 4) and obtain an index i ∈ {0, . . . , n − 1}. To decode a
given index i to a unit vector p ∈ S2, the forward SF mapping has
to be applied (Section 3).
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Figure 5: Histogram of cell areas of SF and ONV for n = 256
(top) and n = 65536 (bottom) samples. Note the logarithmic scale
of the frequency axis.
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Figure 6: Standard deviation of the cell areas for SF and ONVs for
an increasing number of cells. Both variants are implemented for
single (32-bit) and double (64-bit, CPU) precision. Note that both
axes use logarithmic scale.

We evaluate our quantization in two different ways and compare
the results against the state-of-the-art Octahedron Normal Vectors
(ONV) as presented by [Meyer et al. 2010]. For comparison, we
use the more precise ONV implementations, which work in the
range. HSF and HONV denote the algorithms for hemispheres.
The first part of our evaluation measures the uniformity of the
point distribution. We calculated the (spherical) Voronoi cells Vi
for a given set of samples Si, where Si is the Voronoi site of the
cell Vi, i ∈ {0, . . . , n− 1} and d(·, ·) is the geodesic distance:

Vi = {p ∈ S2 : d(p,Si) ≤ d(p,Sj),∀i 6= j}.

Ideally, the spherical areaAi of all Voronoi cells Vi should be equal:
Ai = 4π/n. In Figure 5, the ratios of the cell area to the mean
area for n = 256 and n = 65536 are shown and compared to the
ONV quantization. As can be seen, the SF point sets yield a sig-
nificantly higher frequency of cells that have the average cell area.
Also, the minimum and maximum ratio are considerably closer to 1
(minimum: 0.94, maximum: 1.05), whereas the ONVs generate a
distribution in the range from 0.4 to 1.6 and 0.3 to 1.7, respectively.

To compare the uniformity against ONV for an increasing num-
ber of representatives, we evaluate the standard deviation σ of the
cell area (see Figure 6): σ = 1/n

∑
i(Ai − 4π/n)2. The SF quan-

tization outperforms ONV for any number of bits in terms of uni-
formness. Another interesting finding is the fact that, starting from
n ≈ 32768 samples, the maximum possible floating point preci-
sion is apparently attained, as the 64-bit variant still yields a de-
creasing standard deviation. The algorithm with double precision
(64-bit) was implemented on the CPU with analogous instructions,



Quantization Root-mean-square error (RMSE) (◦) Runtime (ns)
4 6 8 10 12 14 16 18 20 22 Encode Decode

ONV 7.58 3.86 1.95 0.978 0.489 0.244 0.122 0.0611 0.0305 0.0153 0.0998 0.0171
SF (Ours) 7.46 3.62 1.80 0.889 0.448 0.222 0.112 0.0555 0.0280 0.0143 0.1718 0.0143

HONV 6.25 3.28 1.67 0.837 0.419 0.209 0.1050 0.0524 0.0262 0.0131 0.0901 0.0160
HSF (Ours) 5.80 2.73 1.31 0.642 0.318 0.158 0.0788 0.0396 0.0194 0.0105 0.1732 0.0149

Table 1: A comparison of our SF quantization against Octahedron Normal Vectors in terms of root-mean-square error (RMSE) and runtime
per unit vector. We achieve a lower RMSE in every case and an even better runtime for decoding. The encoding performance is slightly worse
as more instructions are necessary. The runtime was measured on an NVIDIA GTX 760.

e.g. fused multiply-add. The second part of the evaluation mea-
sures the quantization error and the runtime for SF point sets as
well as ONV. To this end, we generated 226 points with a uniform
random distribution on a sphere and calculated error measurements,
i.e. the maximum and the root-mean-square error. Our worst case
error is almost equal to the other algorithms for every number of
bits and matches the theoretical bound ∆max, which only occurs
near the poles (see Section 3). Furthermore, the root-mean-square
error (RMSE) is lower in all cases (see Table 1). Our measure-
ments of every ONV variant fit very well to those of [Cigolle et al.
2014]. Following the approach of these authors, the performance
of our algorithm is also evaluated in nanoseconds per unit vector
(measured on an NVIDIA GTX 760) and the stated times include
the parallelism of the GPU.

Due to the increased instruction count for encoding (see Listing 1),
the runtime is slightly higher than ONV (by a factor of≈ 1.7−1.9).
However, our decoding performance is faster than ONV (by a factor
of ≈ 1.1− 1.2). This is of particular interest in the case of normal
maps, where encoding is typically done in an offline preprocessing
step and only decoding occurs during rendering.

5.2 Textures and Filtering

The properties shown in the previous sections make SF points sets
well suited for storing spherical signals. Our inverse mapping and
its variants can easily be used to conduct texture lookups similar
to those implemented with cube mapping. For storage, we simply
store a color value, for instance, in a buffer for each index i.

As shown in the previous section, SF point sets easily outperform
octahedral parameterizations on the sphere at the same sample rate.
Therefore, SF point sets readily outperform Octahedron Environ-
ment Maps (OEM) [Engelhardt and Dachsbacher 2008] in sampling
quality. Since these yield a slightly better distribution of samples
on the sphere than cube maps [Greene 1986], SF texture represen-
tations also outperform cube maps in terms of sampling quality.

It is also possible to implement mipmapping using the lookup meth-
ods of the next sections on two buffers with different SF point set
resolutions (or one, which contains multiple resolutions). The re-
sults of the lookups get then linearly interpolated.

5.2.1 Nearest Neighbor Filtering

Nearest neighbor filtering is straightforward to implement when us-
ing our inverse mapping. For a given direction vector, the inverse
mapping is used to retrieve the index of the corresponding sample
on the sphere, after which we then perform a buffer lookup with
this index to fetch the assigned values.

5.2.2 Smooth Filtering

Since nearest neighbor filtering is not suited for many applications,
we extend our mapping to fetch and filter samples from a larger
neighborhood. We apply the same mapping strategy as described

Figure 7: SF texture mapping examples: Nearest neighbor filtering
(top row) and smooth filtering (bottom row) filtering for 128, 512,
2048, 8192, and 65536 samples.

in Section 4, but instead of rounding down, we round to the clos-
est local grid coordinate and sample over a 3 × 3 neighborhood
{cp + (i, j)T, i, j ∈ {−1, 0, 1}}. Unfortunately, for regions
around the poles (k′ ≤ 4) the sampled neighborhoods become
too distorted to recover all samples for filtering properly. In case
a lookup coordinate p falls into these polar caps, we sample over
16 samples that affect these regions directly, enabling smooth tex-
ture lookups on the entire spherical surface. Note that for larger n
the polar regions become relatively small and thus only affect the
overall performance of the technique to a minor extent.

For filtering, we use the weighted mean of all samples by employ-
ing a smoothstep-based weighting scheme. As an approximation of
the geodesic distances, we use the euclidean distance δs between
the lookup position p and each sample’s position. For the radius h
of the smoothing kernel we choose h2 = 4π/n, which is the average
spherical Voronoi cell area for n samples. This yields the sample’s
weights ωs = 3t2−2t3 with t = max(0, 1−δs/h). Figure 7 shows
a comparison of our filtering techniques at varying sample resolu-
tions. We measured their performance by conducting 227 lookups
in random directions on a 512 × 512 × 6 cube map and an SF
points set with the same number of samples. While the cube map
performed lookups with 0.022 ns/sample, our SF techniques were
significantly slower, with 0.1863 ns/sample and 0.6817 ns/sample
for the nearest and smooth filtering approaches, respectively. This
huge performance difference can simply be explained by the GPU’s
hardware acceleration for the cube map lookups. Additionally, SF
based sampling is not very cache efficient by construction, since
spatially close samples partially reside in distant memory locations.

5.3 Procedural Modeling

In addition to the apparent applications for vector quantization and
texture lookups for spherical signals, our inverse mapping can also
be employed in procedural modeling. When applied to implicit
function representations, our inverse mapping can, for instance, be
used to place objects along spherical surfaces. It also can be used to
generate implicitly defined displacements along SF grids as shown
in Figure 8.



(a) (b)

Figure 8: (a) Sphereflake-like fractal with four recursion levels,
resulting in a total of 224 + 1 spheres using 256 SF samples.
(b) A sphere surface with implicit displacement mapping using the
inverse mapping (n = 128 SF samples).

The bound ∆min (see Section 3) is a great convenience in this con-
text. The maximum size of objects distributed along an SF point set
can be derived from it, such that they fit into all SF Voronoi cells.
Both images are rendered using sphere tracing (see [Hart 1996] and
[Keinert et al. 2014]).

The SF sphereflake object (Figure 8a) can easily be implemented
as an implicit function f : R3 → R with a single loop over all
recursive levels. At each level, we compute the distance to a single
sphere. In case the maximum depth is not reached, we build an
orthonormal basis around the vector corresponding to the closest
SF sample for the sphere of the respective level. After that, we
transform the space – using the orthonormal basis – such that the
sphere of the next level lies on the sphere of the current recursive
level. Computing the minimum of the distances to the spheres of all
levels yields an implicit function with the surface f−1({0}), which
can be rendered using sphere tracing.

The sphere with SF displacements (Figure 8b) is also represented
as an implicit function, where we simply add procedural displace-
ments based on the geodesic distance to the nearest SF sample.
Given that our inverse mapping runs in constant time, arbitrary
numbers of object placements and surface modifications can be ap-
plied without increasing the cost for one single evaluation of the
implicit function.

6 Limitations

While our proposed methods perform well, they exhibit a few limi-
tations – on the one hand caused by the properties of SF point sets
and on the other by implementation issues.

The number of addressable points of our implementation is limited
by the available floating point precision. Therefore, our 32-bit GPU
implementation can handle a maximum of 223 samples, where the
number of samples n can only be chosen arbitrarily (i.e. non power
of two) for n ≤ 221. While a double precision variant improves
upon these issues, the performance impact for a GPU implemen-
tation is significant. Alternatively, a fixed-point arithmetic imple-
mentation of our method should be capable of addressing a larger
number of SF points, while still being able to use 32-bit arithmetic.

The proposed implementation for the inverse mapping is rather
computationally intense. Nevertheless, the performance can be
significantly improved by omitting the recomputations (Section
4, Implementation) in the innermost loop, if n is known to be
smaller (n ≤ 216). Graphics hardware tends to provide more and
more compute performance, whereas memory throughput/latency

remains the major bottleneck. Additionally, latency hiding tech-
niques can readily be applied since the inverse mapping does not
require any memory operations at all.

The application of our inverse mapping for texture filtering (Sec-
tion 5.2) is currently problematic performance-wise, since no direct
hardware support exists and incoherent memory accesses have to
be conducted. A mapping based on space-filling curves (e.g. Mor-
ton order) could be applied to the local grids to improve upon this
issue. We consider this an interesting direction for future research.

7 Conclusion

In this paper, we showed an analytic constant time inverse mapping
for SF point sets. Further, we addressed typical implementation
issues and presented an efficient GPU implementation. We demon-
strated the use of this inverse mapping and its variants in various
example applications.

Even though spherical Fibonacci point sets are not the globally best
distribution of samples on a sphere, they yield excellent sampling
properties and are extremely simple to construct in contrast to other
more sophisticated spherical sampling schemes. The presented fast
inverse mapping from points on the unit sphere to SF point sets
enables a very broad range of applications.

Spherical Fibonacci point sets should be easily applicable to spatial
hashing approaches for spherical data, where the lack of memory
coherence – in contrast to texture storage – would be less relevant.
Furthermore, SF point sets can be used to place icons in virtual
reality environments on a sphere around the user. Both, efficient
icon placement and picking are easy to implement with SF point
sets and our inverse mapping, respectively.
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Appendix

Derivation of Equation 5

Given Equation 4, with sin θ =
√

1− z2, the objective function to
minimize is:

f(k) =

∥∥∥∥∥
(
−(−1)k2πΦ−k sin θ,

−2Fk
n sin θ

)T
∥∥∥∥∥

2

2

=

= (−1)2k4π2Φ−2k sin2 θ +
4F 2

k

n2 sin2 θ
.

We then apply the approximation Fk ≈ Φk
√

5
:

f(k) ≈ f̂(k) = 4π2Φ−2k sin2 θ +
4Φ2k

5n2 sin2 θ
,

The derivative of f̂ with respect to k is given by:

f̂ ′(k) = −8π2 sin2(θ) ln(Φ) · Φ−2k +
8 ln Φ

5n2 sin2 θ
· Φ2k.

Solving for the zero-crossing f̂ ′(k)
!
= 0 yields:

8 ln Φ

5n2 sin2 θ
· Φ2k = 8π2 sin2(θ) ln(Φ) · Φ−2k

⇔ Φ4k = 5n2π2 sin4(θ)

⇒ (Φ2)k =
√

5nπ sin2(θ)

⇔ k = logΦ2(
√

5nπ sin2(θ)) = logΦ2(
√

5nπ(1− z2)).

Derivation of Equation 13

In the following, we will show how to deduce Equation 13 from
Equation 3. In the following we assume k ∈ N, k ≥ 2. Since the
second component is identical we only consider the first component
of both equations:

−(−1)k2πΦ−k︸ ︷︷ ︸
Equation 3

= 2π

[
Fk + 1

Φ

]
− 2π

Φ︸ ︷︷ ︸
Equation 13

.

Simplification and stripping the factor of 2π on both sides yields:

−
(
− 1

Φ

)k
=

[
Fk + 1

Φ

]
− 1

Φ
.

The absolute value of the term −(− 1/Φ)k decreases strict mono-
tonically for increasing k, as 1

Φ
≈ 0.618 ∈ (0, 1). Given that

k ≥ 2, the lower and the upper bound of its value are given as:

− 1

Φ2︸ ︷︷ ︸
≈−0.382

≤ −
(
− 1

Φ

)k
≤ 1

Φ3︸︷︷︸
≈0.236

.

Applying a shift of 1/Φ, yields:

1

Φ
− 1

Φ2︸ ︷︷ ︸
≈0.236

≤ 1

Φ
−
(
− 1

Φ

)k
≤ 1

Φ
+

1

Φ3︸ ︷︷ ︸
≈0.854

.

We then use the invariance property for the interval [0, 1) of the
fractional part operator, i.e. [x] = x− bxc = x for x ∈ [0, 1):

1

Φ
−
(
− 1

Φ

)k
=

[
1

Φ
−
(
− 1

Φ

)k]

⇔ −
(
− 1

Φ

)k
=

[
1

Φ
−
(
− 1

Φ

)k]
− 1

Φ
.

Applying the identity
(
− 1

Φ

)k
= − 1

Φ
Fk+Fk−1 (decomposition of

powers of the golden ratio), yields:

−
(
− 1

Φ

)k
=

[
1

Φ
−
(
− 1

Φ

)k]
− 1

Φ
=

=

[
1

Φ
−
(
− 1

Φ
Fk + Fk−1

)]
− 1

Φ
=

=

[
1

Φ
+

1

Φ
Fk

]
− 1

Φ
=

[
Fk + 1

Φ

]
− 1

Φ
.

The reintroduction of the factor 2π and slight reformulation leads
to the equality from the beginning of our derivation:

−(−1)k2πΦ−k = 2π

[
Fk + 1

Φ

]
− 2π

Φ
.




