

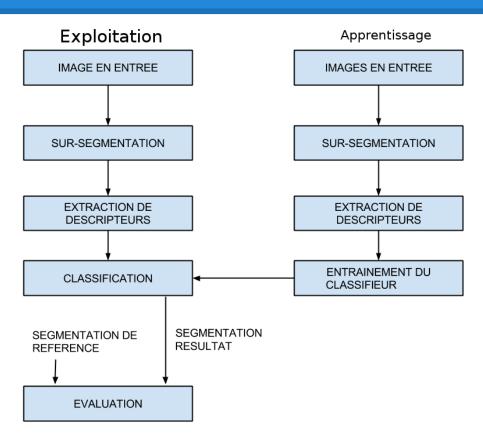
Localisation de poisson dans une image : Recette

Clients : Alain Crouzil, Bérengère Mathieu

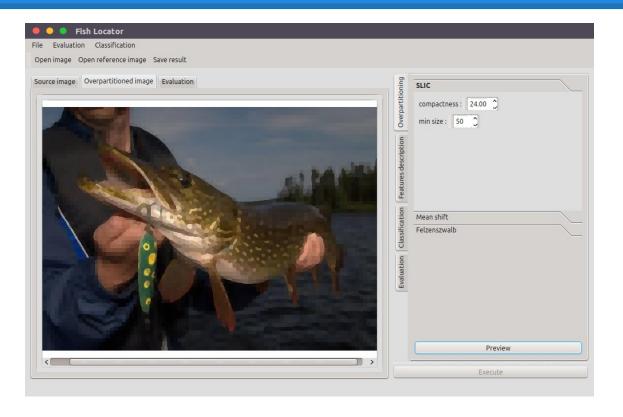
Présenté par : Benjamin Nevers, Fateh Benmerzoug, Julie Chéoux, Marina Bertolino, Vincent Laborde

Plan de la présentation

I. Introduction


- II. Travail effectué par modules
- III. Tests
- IV. Présentation de l'application
 - V. Conclusion et perspectives

I. Introduction


- Contexte
 - Laboratoire ECOLAB
 - Authentification de poissons

- Présentation du sujet
 - Localisation dans l'image du poisson pêché
 - Simplification des méthodes de Fulkerson et Liu

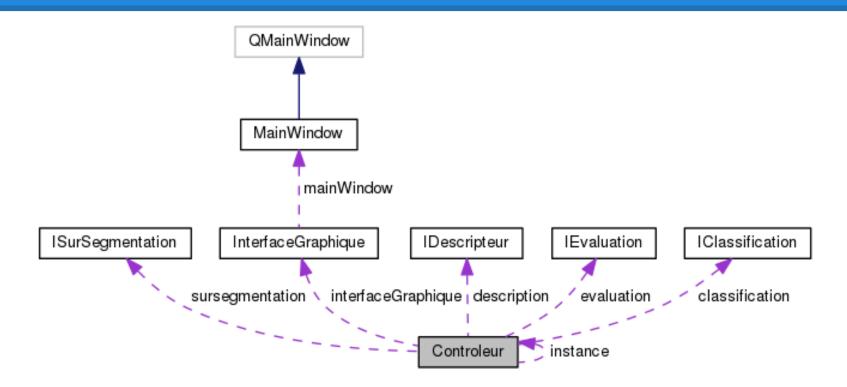
I. Introduction: Pipeline

I. Introduction: Interface

I. Introduction: Application

- Une interface graphique ;
- Trois méthodes de sur-segmentation ;
- Deux méthodes d'extraction de descripteurs par la texture ;
- Deux méthodes de classification de superpixels ;
- Deux méthodes d'évaluation.

Plate-forme de développement

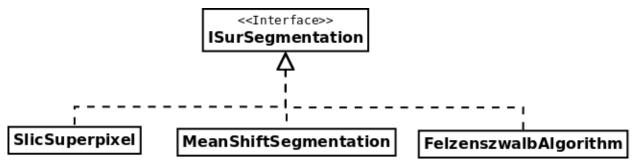

- Langage C++
- Code existant
 - Les méthodes de sur-segmentation sont fournies par le client.

- Différentes bibliothèques
 - qt, libsvm, alglib.

II. Travail effectué par modules

- 1. Le module Contrôleur
- 2. Le module Sur-segmentation
- 3. Le module Description
- 4. Le module Classification
- 5. Le module Évaluation
- 6. Le module Interface Graphique

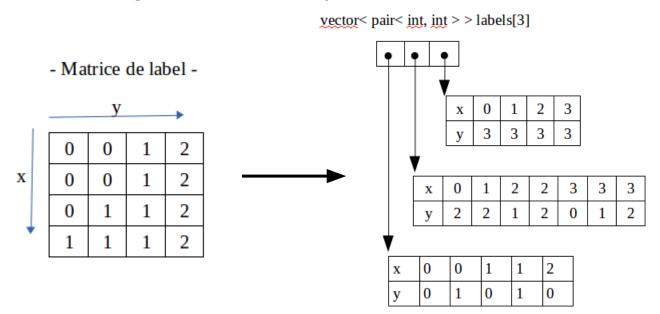
II. Interaction entre les modules



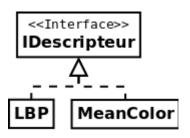
II.1. Module Contrôleur

- Gère les interactions entre les modules ;
- Contient les fonctions "Set" et "perform";
- Fonctionne aussi en mode console.

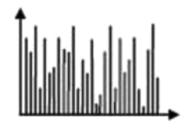
II.2. Module Sur-segmentation


La sur-segmentation sert à découper l'image chargée à partir de l'interface graphique, en plusieurs sous-régions de pixels homogènes appelés superpixels.

II.2. Module Sur-segmentation

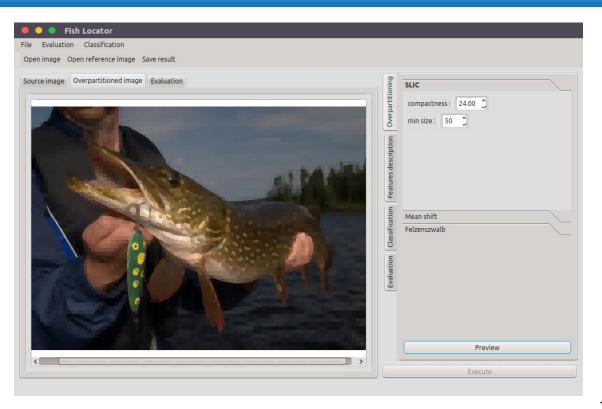

Pour faciliter la manipulation de données :

transformeImageLabel: vector<pair<int, int>> * labels.


II.3. Module Description

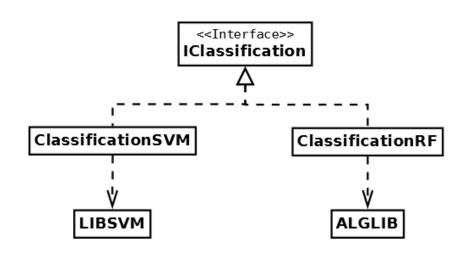
Un descripteur nous permet de représenter la région d'un pixel par sa texture ou sa couleur, afin d'obtenir une information sur ce pixel et son voisinage.

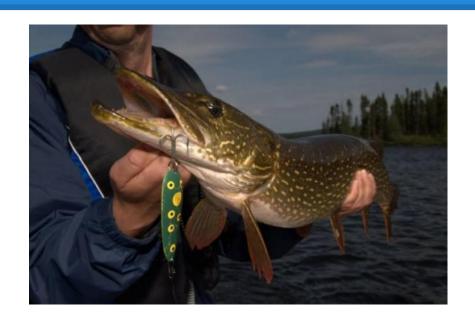
Pour LBP:


- un descripteur = un histogramme ;
- invariance en rotation et en luminance .

Histogramme représentant un descripeur d'un superpixel

II.3. Module Description


Mean color


II.4. Module Classification

La classification permet de déterminer si un superpixel correspond au brochet sur la photographie ou non.

- Contient les méthodes : load, save, train, classify.
- Deux phases : entraînement, classification.
- Retour :
 vector<int> représentant la
 classe de chaque superpixel.

II.4. Module Classification

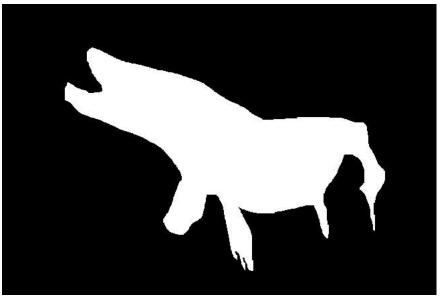


Image source

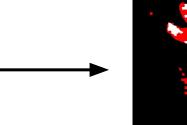
segmentation de reference

II.5. Module Évaluation

- Évalue les méthodes utilisées pour segmenter;
- Comparaison avec une segmentation de référence ;
- 2 types d'évaluations :
 - Classique;
 - Non classique.
- Résultats :
 - Image (noir/blanc/rouge);
 - Précision, rappel, pourcentage de pixels corrects.

II.5. Module Évaluation

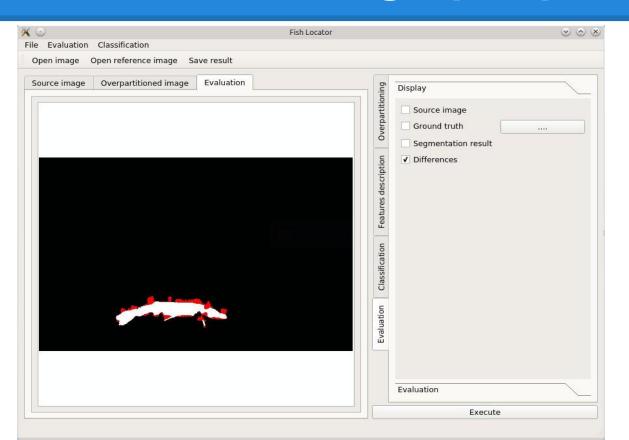
Image source



Segmentation résultat

Segmentation de référence

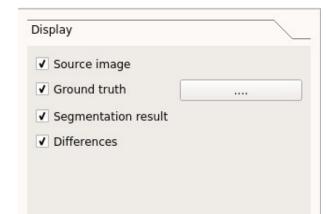
Résultat visuel de l'évaluation


II.6. Module Interface graphique

L'interface permet de mettre en relation l'utilisateur et le contrôleur par le biais d'une multitude de widgets.

Permet de :

- Charger une image;
- Sélectionner une des méthodes à appliquer ;
- Choisir les paramètres des méthodes ;
- Sauvegarder un entraînement ;
- Sauvegarder le résultat (image + fichier xml);
- Afficher par calques.


II.6. Module Interface graphique

Module Contrôleur :

- Nous avons vérifié qu'il faisait bien appel au bonnes fonctions suivant les méthodes choisie dans l'application;
- Nous avons vérifié que le programme fonctionne en mode console.

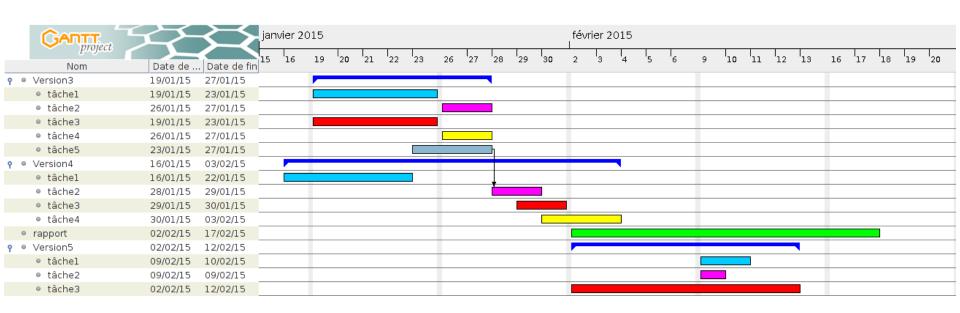
- Module Interface graphique :
 - Tester l'édition des différents paramètres ;
 - Tester l'appel des fonctions concernées lors des clics sur les boutons ;
 - Tester les différents boutons preview, save, load, execute, evaluate;
 - Tester l'affichage avec les différents checkbox de l'onglet Display.

- Module Sur-segmentation :
 - Comparer les résultats du code existant avec nos résultats ;
 - Tester sur de petites matrices la fonction transformelmageLabel.

- Module Description (utilisation de code jetables) :
 - Classe LBP : vérifier le résultat de l'histogramme obtenu, avec des petites matrices ;
 - Classe MeanColor : comparer les calculs obtenus avec le résultat attendu.

Module Classification :

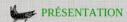
- Analyser les informations renvoyées par les fonctions des bibliothèques;
- Retourne bien 0 ou 1 (c'est-à-dire "pas brochet" ou "brochet").


Module Évaluation :

- Mettre la même image en référence et en résultat (~ 100%);
- Mettre deux images complètement différentes (~ 0%).

IV. Présentation de l'application

Planning mis à jour


Livrables

- Code source ;
- Manuel d'utilisation ;
- Documentation Doxygen;
- Site Web.

Le site web

Chef d'oeuvre M2IM : Localisation de poissons

Dans le cadre du master 2 Image et Multimédia, nous avons participé à l'UE (unité d'enseignement) chef d'oeuvre, encadré par Mathias Paulin, David Vanderhaeghe et Christophe Collet, dans laquelle il nous a été demandé de développer un projet en groupe implémentant plusieurs méthodes décrites dans des articles de recherche. Ce projet de fin d'études nous a permis de mettre en pratique les connaissances acquises lors nos cours à l'université.

Dans le cadre de ses travaux avec EcoLab (laboratoire écologie fonctionnelle et environnement), l'équipe TCI (Traitement et

À PROPOS DE NOUS

Nous sommes 5 étudiants en Master 2 d'Informatique Image et Multimédia à l'université Paul Sabatier de Toulouse :

- Fateh Ben Merzoug
- Marina Bertolino
- Julie Chéoux

Conclusion et perspectives

Le travail demandé a été fait :

Les versions ont été validées par nos clients.

Perspectives:

- Augmenter le nombre d'images pour l'entraînement ;
- Possibilité d'ajout de méthodes (HOG, SIFT...);
- Généralisation du projet.

